Department of Mathematics, Konkuk University, Seoul 143-701, Korea.
IEEE Trans Med Imaging. 2010 Mar;29(3):781-9. doi: 10.1109/TMI.2009.2036440.
An aim of magnetic resonance electrical impedance tomography (MREIT) is to visualize the internal current density and/or the conductivity of an imaging object. In MREIT, it is desirable to use just one component of the internal magnetic flux density vector B=(B(x),B(y),B(z)) caused by the injected current, measured without rotating the object. We present a method of visualizing the axial anisotropic conductivity tensor by use of the measured magnetic flux density B(z) data. The method involves the use of a projected current density, which is a uniquely and stably determined component of the internal current generated by the injected current, derived from the measured B(z) data. Each component of the axial anisotropic conductivity is recovered by matching the measured B(z) data with a determined intermediate isotropic conductivity and the projected currents. Results from numerical simulations demonstrate that the proposed algorithm is robust to noise and stably determines the anisotropic conductivity tensor on the imaging slice. For a practical implementation, we studied a postmortem canine brain case to visualize each component of the anisotropic conductivity. We observed that the reconstructed anisotropic conductivity images clearly reflects the anisotropic property of the white matter in the direction parallel to its fibers.
磁共振电阻抗断层成像(MREIT)的目的是可视化成像物体的内部电流密度和/或电导率。在 MREIT 中,希望仅使用由注入电流引起的内部磁通密度矢量 B=(B(x),B(y),B(z))的一个分量,而无需旋转物体即可进行测量。我们提出了一种通过使用测量的磁通密度 B(z)数据来可视化各向异性电导率张量的方法。该方法涉及使用投影电流密度,这是由注入电流产生的内部电流的唯一且稳定确定的分量,它是从测量的 B(z)数据中得出的。通过将测量的 B(z)数据与确定的中间各向同性电导率和投影电流匹配,恢复各向异性电导率的各个分量。数值模拟结果表明,所提出的算法对噪声具有鲁棒性,并能稳定地确定成像切片上的各向异性电导率张量。为了实际实现,我们研究了死后犬脑的情况,以可视化各向异性电导率的各个分量。我们观察到,重建的各向异性电导率图像清晰地反映了与纤维平行方向的白质的各向异性特性。