Suppr超能文献

评估缓解策略作为未来不确定性下风险管理工具:一种多模型方法。

Assessment of mitigation strategies as tools for risk management under future uncertainties: a multi-model approach.

作者信息

Mori Shunsuke, Washida Toyoaki, Kurosawa Atsushi, Masui Toshihiko

机构信息

1Tokyo University of Science, Yamasaki 2641, Noda, Chiba 278-8510 Japan.

2Sophia University, Kioi-cho, 7-1, Chiyoda-ku, Tokyo, 102-0094 Japan.

出版信息

Sustain Sci. 2018;13(2):329-349. doi: 10.1007/s11625-017-0521-6. Epub 2018 Jan 8.

Abstract

Although the world understands the possible threat of the future of climate changes, there remain serious barriers to be resolved in terms of policy decisions. The scientific and the societal uncertainties in the climate change policies must be the large part of this barrier. Following the Paris Agreement, the world comes to the next stage to decide the next actions. Without a view of risk management, any decision will be "based on neglecting alternatives" behavior. The Ministry of the Environment, Japan has established an inter-disciplinary research project, called Integrated Climate Assessment-Risks, Uncertainties, and Society (ICA-RUS) conducted by Dr. Seita Emori, National Institute for Environmental Studies. ICA-RUS consists of five research themes, i.e., (1) synthesis of global climate risks, (2) optimization of land, water, and ecosystem for climate risks, (3) analysis of critical climate risks, (4) evaluation of climate risk management options, and (5) interactions between scientific and social rationalities. We participated in the fourth theme to provide the quantitative assessment of technology options and policy measures by integrating assessment model simulations. We employ the multi-model approach to deal with the complex relationships among various fields such as technology, economics, and land use changes. Four different types of integrated assessment models, i.e., MARIA-14 (Mori), EMEDA (Washida), GRAPE (Kurosawa), and AIM (Masui), participate in the fourth research theme. These models contribute to the ICA-RUS by providing two information categories. First, these models provide common simulation results based on shared socioeconomic pathway scenarios and the shared climate policy cases given by the first theme of ICA-RUS to see the ranges of the evaluation. Second, each model also provides model-specific outcomes to answer special topics, e.g., geoengineering, sectoral trade, adaptation, and decision making under uncertainties. The purpose of this paper is to describe the outline and the main outcomes of the multi-model inter-comparison among the four models with a focus upon the first and to present the main outcomes. Furthermore, in this study, we introduce a statistical meta-analysis of the multi-model simulation results to see whether the differently structured models provide the inter-consistent findings. The major findings of our activities are as follows: First, in the stringent climate target, the regional economic losses among models tend to diverge, whereas global total economic loss does not. Second, both carbon capture and storage (CCS) as well as BECCS are essential for providing the feasibility of stringent climate targets even if the deployment potential varies among models. Third, the models show small changes in the crop production in world total, whereas large differences appear between regions. Fourth, the statistical meta-analysis of the multi-model simulation results suggests that the models would have an implicit but common relationship between gross domestic product losses and mitigation options even if their structures and simulation results are different. Since this study is no more than a preliminary exercise of the statistical meta-analysis, it is expected that more sophisticated methods such as data mining or machine learning could be applicable to the simulation database to extract the implicit information behind the models.

摘要

尽管全世界都明白气候变化未来可能带来的威胁,但在政策决策方面仍存在严重障碍有待解决。气候变化政策中的科学和社会不确定性必然是这一障碍的主要部分。继《巴黎协定》之后,世界进入了决定下一步行动的新阶段。如果没有风险管理的视角,任何决策都将是“基于忽视其他选择”的行为。日本环境省设立了一个跨学科研究项目,名为“综合气候评估——风险、不确定性与社会”(ICA - RUS),由国立环境研究所的江守诚太博士主持。ICA - RUS包括五个研究主题,即:(1)全球气候风险综合分析;(2)针对气候风险优化土地、水和生态系统;(3)关键气候风险分析;(4)气候风险管理选项评估;(5)科学合理性与社会合理性之间的相互作用。我们参与了第四个主题,通过整合评估模型模拟对技术选项和政策措施进行定量评估。我们采用多模型方法来处理技术、经济和土地利用变化等不同领域之间的复杂关系。四种不同类型的综合评估模型,即MARIA - 14(森)、EMEDA(鹫田)、GRAPE(黑泽)和AIM(增井)参与了第四个研究主题。这些模型通过提供两类信息为ICA - RUS做出贡献。首先,这些模型基于ICA - RUS第一个主题给出的共享社会经济路径情景和共享气候政策案例提供共同的模拟结果,以查看评估范围。其次,每个模型还提供特定于模型的结果,以回答特殊主题,例如地球工程、部门贸易、适应以及不确定性下的决策制定。本文的目的是描述这四个模型之间多模型相互比较的概况和主要结果,重点关注第一个方面并展示主要结果。此外,在本研究中,我们引入了对多模型模拟结果的统计元分析,以查看结构不同的模型是否能提供相互一致的结果。我们活动的主要发现如下:第一,在严格的气候目标下,各模型之间的区域经济损失往往存在差异,而全球总经济损失则不然。第二,碳捕获与封存(CCS)以及生物能源与碳捕获和封存(BECCS)对于实现严格气候目标的可行性都至关重要,尽管各模型中的部署潜力有所不同。第三,各模型显示世界总产量中作物产量变化较小,而不同地区之间存在较大差异。第四,对多模型模拟结果的统计元分析表明,即使模型结构和模拟结果不同,它们在国内生产总值损失与减排选项之间可能存在一种隐含但共同的关系。由于本研究不过是统计元分析的初步尝试,预计诸如数据挖掘或机器学习等更复杂的方法可应用于模拟数据库,以提取模型背后的隐含信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cddb/6086289/7100daca3edc/11625_2017_521_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验