Suppr超能文献

用切割平面法学习数据流形

Learning Data Manifolds with a Cutting Plane Method.

作者信息

Chung SueYeon, Cohen Uri, Sompolinsky Haim, Lee Daniel D

机构信息

Center for Brain Science, Harvard University, Cambridge, MA 02138, U.S.A., and Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel

出版信息

Neural Comput. 2018 Oct;30(10):2593-2615. doi: 10.1162/neco_a_01119. Epub 2018 Aug 27.

Abstract

We consider the problem of classifying data manifolds where each manifold represents invariances that are parameterized by continuous degrees of freedom. Conventional data augmentation methods rely on sampling large numbers of training examples from these manifolds. Instead, we propose an iterative algorithm, [Formula: see text], based on a cutting plane approach that efficiently solves a quadratic semi-infinite programming problem to find the maximum margin solution. We provide a proof of convergence as well as a polynomial bound on the number of iterations required for a desired tolerance in the objective function. The efficiency and performance of [Formula: see text] are demonstrated in high-dimensional simulations and on image manifolds generated from the ImageNet data set. Our results indicate that [Formula: see text] is able to rapidly learn good classifiers and shows superior generalization performance compared with conventional maximum margin methods using data augmentation methods.

摘要

我们考虑对数据流形进行分类的问题,其中每个流形表示由连续自由度参数化的不变性。传统的数据增强方法依赖于从这些流形中采样大量的训练示例。相反,我们提出了一种迭代算法,[公式:见原文],基于一种切割平面方法,该方法有效地解决了一个二次半无限规划问题,以找到最大间隔解。我们提供了收敛性证明以及目标函数达到所需容差所需迭代次数的多项式界。[公式:见原文]的效率和性能在高维模拟以及从ImageNet数据集中生成的图像流形上得到了证明。我们的结果表明,[公式:见原文]能够快速学习良好的分类器,并且与使用数据增强方法的传统最大间隔方法相比,具有卓越的泛化性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验