Suppr超能文献

双随机归一化图拉普拉斯算子:向流形拉普拉斯算子的收敛性及对离群噪声的鲁棒性

Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise.

作者信息

Cheng Xiuyuan, Landa Boris

机构信息

Department of Mathematics, Duke University, Durham, NC 27708, US.

Department of Electrical and Computer Engineering, Yale University, New Haven, CT 06520, US.

出版信息

Inf inference. 2024 Sep 20;13(4):iaae026. doi: 10.1093/imaiai/iaae026. eCollection 2024 Dec.

Abstract

Bi-stochastic normalization provides an alternative normalization of graph Laplacians in graph-based data analysis and can be computed efficiently by Sinkhorn-Knopp (SK) iterations. This paper proves the convergence of bi-stochastically normalized graph Laplacian to manifold (weighted-)Laplacian with rates, when [Formula: see text] data points are i.i.d. sampled from a general [Formula: see text]-dimensional manifold embedded in a possibly high-dimensional space. Under certain joint limit of [Formula: see text] and kernel bandwidth [Formula: see text], the point-wise convergence rate of the graph Laplacian operator (under 2-norm) is proved to be [Formula: see text] at finite large [Formula: see text] up to log factors, achieved at the scaling of [Formula: see text]. When the manifold data are corrupted by outlier noise, we theoretically prove the graph Laplacian point-wise consistency which matches the rate for clean manifold data plus an additional term proportional to the boundedness of the inner-products of the noise vectors among themselves and with data vectors. Motivated by our analysis, which suggests that not exact bi-stochastic normalization but an approximate one will achieve the same consistency rate, we propose an approximate and constrained matrix scaling problem that can be solved by SK iterations with early termination. Numerical experiments support our theoretical results and show the robustness of bi-stochastically normalized graph Laplacian to high-dimensional outlier noise.

摘要

双随机归一化在基于图的数据分析中为图拉普拉斯算子提供了一种替代的归一化方法,并且可以通过Sinkhorn-Knopp(SK)迭代有效地进行计算。本文证明了在从嵌入到可能高维空间中的一般(d)维流形中独立同分布采样(n)个数据点时,双随机归一化图拉普拉斯算子以一定速率收敛到流形(加权)拉普拉斯算子。在(n)和核带宽(h)的某些联合极限下,证明了图拉普拉斯算子(在2-范数下)在有限大的(n)时,直至对数因子,逐点收敛速率为(O(\frac{h^2}{n})),在(h = O(\sqrt{\frac{1}{n}}))的尺度下实现。当流形数据被离群值噪声破坏时,我们从理论上证明了图拉普拉斯算子的逐点一致性,它与干净流形数据的速率相匹配,再加上一个与噪声向量之间以及与数据向量的内积的有界性成比例的附加项。基于我们的分析,即不是精确的双随机归一化而是近似的双随机归一化将实现相同的一致性速率,我们提出了一个近似且受约束的矩阵缩放问题,该问题可以通过带有早期终止的SK迭代来解决。数值实验支持了我们的理论结果,并展示了双随机归一化图拉普拉斯算子对高维离群值噪声的鲁棒性。

相似文献

2
Laplacian embedded regression for scalable manifold regularization.拉普拉斯嵌入回归的可扩展流形正则化。
IEEE Trans Neural Netw Learn Syst. 2012 Jun;23(6):902-15. doi: 10.1109/TNNLS.2012.2190420.
5
Rates of convergence for regression with the graph poly-Laplacian.使用图多项式拉普拉斯算子进行回归的收敛速率。
Sampl Theory Signal Process Data Anal. 2023;21(2):35. doi: 10.1007/s43670-023-00075-5. Epub 2023 Nov 27.
7
Remark on the Cauchy problem for the evolution -Laplacian equation.关于发展型拉普拉斯方程柯西问题的注记
J Inequal Appl. 2017;2017(1):175. doi: 10.1186/s13660-017-1449-1. Epub 2017 Aug 1.
9
SSC-EKE: Semi-Supervised Classification with Extensive Knowledge Exploitation.SSC-EKE:利用广泛知识的半监督分类
Inf Sci (N Y). 2018 Jan;422:51-76. doi: 10.1016/j.ins.2017.08.093. Epub 2017 Sep 21.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验