Suppr超能文献

在不同非生物胁迫条件下用于转录研究的合适内参基因的鉴定。

Identification of suitable internal control genes for transcriptional studies in under different abiotic stress conditions.

作者信息

Jatav Pradeep K, Sharma Ankita, Dahiya Dinesh K, Khan Arif, Agarwal Atika, Kothari S L, Kachhwaha Sumita

机构信息

1Department of Botany, University of Rajasthan, Jaipur, 302004 India.

National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India.

出版信息

Physiol Mol Biol Plants. 2018 Sep;24(5):793-807. doi: 10.1007/s12298-018-0544-1. Epub 2018 Jul 4.

Abstract

Finger millet [ (L.) Gaertn] is an excellent food and forage crop of arid and semiarid areas in Africa and Asia. It is well adapted to drought, heat, high salinity, poor soil fertility and low pH with an efficient C carbon fixation mechanism for high yield potential. To normalize the target gene expression data, the identification of suitable reference genes is essential. Ten candidate reference genes were selected and their expression stability was analyzed in various samples treated with different abiotic stress conditions. Five different statistical algorithms: geNorm, NormFinder, BestKeeper, ΔCt, and RefFinder were used to determine the stability of these genes. Our results revealed 1 and as highly stable reference genes and 2 and 4 as least stable reference genes across all the samples and suggesting that these genes could be used for accurate transcript normalization under abiotic stress. To the best of our knowledge, this is the first report on identification of suitable reference genes for accurate transcript normalization using qRT-PCR in finger millet under abiotic stress.

摘要

龙爪稷[(L.)Gaertn]是非洲和亚洲干旱及半干旱地区优良的粮食和饲料作物。它对干旱、高温、高盐度、土壤肥力差和低pH值具有良好的适应性,具有高效的C碳固定机制,产量潜力高。为了使目标基因表达数据标准化,鉴定合适的内参基因至关重要。选择了10个候选内参基因,并在不同非生物胁迫条件处理的各种样品中分析了它们的表达稳定性。使用了五种不同的统计算法:geNorm、NormFinder、BestKeeper、ΔCt和RefFinder来确定这些基因的稳定性。我们的结果表明,在所有样品中,1和为高度稳定的内参基因,2和4为最不稳定的内参基因,这表明这些基因可用于非生物胁迫下准确的转录本标准化。据我们所知,这是关于在非生物胁迫下使用qRT-PCR鉴定龙爪稷中用于准确转录本标准化的合适内参基因的首次报道。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验