Bouharras Fatima Ezzahra, Atlas Salima, Capaccioli Simone, Labardi Massimiliano, Hajlane Abdelghani, Ameduri Bruno, Raihane Mustapha
IMED-Lab., Faculty of Sciences and Techniques, Cadi Ayyad University (UCA), Av. A. El Khattabi, B.P. 549, Marrakesh 40000, Morocco.
Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy.
Polymers (Basel). 2023 Jul 22;15(14):3126. doi: 10.3390/polym15143126.
Core-double-shell-structured nanocomposite films consisting of polyvinylidene fluoride--barium titanate (PVDF--BT) incorporated into a P(VDF-co-hexafluoropropylene (HFP)) copolymer matrix were produced via a solution mixing method for energy storage applications. The resulting films were thoroughly investigated via spectroscopic, thermal, and morphological analyses. Thermogravimetric data provided an enhancement of the thermal stability, while differential scanning calorimetry indicated an increase in the crystallinity of the films after the addition of PVDF--BT. Moreover, broadband dielectric spectroscopy revealed three dielectric processes, namely, glass-rubber relaxation (α), relaxation associated with the polymer crystalline phase (α), and slower relaxation in the nanocomposites resulting from the accumulation of charge on the interface between the PVDF--BT filler and the P(VDF--HFP) matrix. The dependence of the dielectric constant from the composition was analyzed, and we found that the highest permittivity enhancement was obtained by the highest concentration filler added to the largest concentration of P(VDF--HFP). Mechanical analysis revealed an improvement in Young's modulus for all nanocomposites versus pristine P(VDF--HFP), confirming the uniformity of the distribution of the PVDF--BT nanocomposite with a strong interaction with the copolymer matrix, as also evidenced via scanning electron microscopy. The suggested system is promising for use in high-energy-density storage devices as supercapacitors.
通过溶液混合法制备了由聚偏氟乙烯 - 钛酸钡(PVDF - BT)掺入聚(偏氟乙烯 - 共 - 六氟丙烯(HFP))共聚物基体中组成的核 - 双壳结构纳米复合薄膜,用于能量存储应用。通过光谱、热和形态分析对所得薄膜进行了全面研究。热重数据表明热稳定性有所提高,而差示扫描量热法表明添加PVDF - BT后薄膜的结晶度增加。此外,宽带介电谱揭示了三种介电过程,即玻璃 - 橡胶弛豫(α)、与聚合物结晶相相关的弛豫(α)以及由于PVDF - BT填料与聚(偏氟乙烯 - HFP)基体之间界面上电荷积累导致的纳米复合材料中较慢的弛豫。分析了介电常数与组成的关系,我们发现添加到最大浓度的聚(偏氟乙烯 - HFP)中的最高浓度填料可获得最高的介电常数增强。力学分析表明,所有纳米复合材料的杨氏模量相对于原始聚(偏氟乙烯 - HFP)都有所提高,这证实了PVDF - BT纳米复合材料分布的均匀性以及与共聚物基体的强相互作用,扫描电子显微镜也证明了这一点。所提出的体系有望用于作为超级电容器的高能量密度存储器件。