Suppr超能文献

用于理解正畸牙齿移动中机械依赖性分子途径的负重细胞模型:一项系统综述。

Weight-Loaded Cell Models for Understanding Mechanodependent Molecular Pathways Involved in Orthodontic Tooth Movement: A Systematic Review.

作者信息

Janjic Mila, Docheva Denitsa, Trickovic Janjic Olivera, Wichelhaus Andrea, Baumert Uwe

机构信息

Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany.

Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany.

出版信息

Stem Cells Int. 2018 Jul 31;2018:3208285. doi: 10.1155/2018/3208285. eCollection 2018.

Abstract

Cells from the mesenchymal lineage in the dental area, including but not limited to PDL fibroblasts, osteoblasts, and dental stem cells, are exposed to mechanical stress in physiological (e.g., chewing) and nonphysiological/therapeutic (e.g., orthodontic tooth movement) situations. Close and complex interaction of these different cell types results in the physiological and nonphysiological adaptation of these tissues to mechanical stress. Currently, different loading models are used to investigate the effect of different types of mechanical loading on the stress adaptation of these cell types. We performed a systematic review according to the PRISMA guidelines to identify all studies in the field of dentistry with focus on mechanobiology using loading models applying uniaxial static compressive force. Only studies reporting on cells from the mesenchymal lineage were considered for inclusion. The results are summarized regarding gene expression in relation to force duration and magnitude, and the most significant signaling pathways they take part in are identified using protein-protein interaction networks.

摘要

口腔区域间充质谱系的细胞,包括但不限于牙周膜成纤维细胞、成骨细胞和牙干细胞,在生理情况(如咀嚼)和非生理/治疗情况(如正畸牙齿移动)下会受到机械应力作用。这些不同细胞类型之间紧密而复杂的相互作用导致这些组织对机械应力产生生理和非生理适应性变化。目前,不同的加载模型被用于研究不同类型的机械加载对这些细胞类型应力适应性的影响。我们根据PRISMA指南进行了一项系统综述,以识别牙科领域中所有聚焦于使用施加单轴静态压缩力加载模型的力学生物学研究。仅纳入了报告间充质谱系细胞的研究。总结了关于基因表达与力的持续时间和大小的关系的结果,并使用蛋白质-蛋白质相互作用网络确定了它们参与的最显著信号通路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff2f/6091372/1580da5f4794/SCI2018-3208285.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验