Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
J Am Chem Soc. 2012 Oct 10;134(40):16635-45. doi: 10.1021/ja305668h. Epub 2012 Sep 27.
Photo-oxidations of hydrogen-bonded phenols using excited-state polyarenes are described to derive fundamental understanding of multiple-site concerted proton-electron transfer reactions (MS-CPET). Experiments have examined phenol bases having -CPh(2)NH(2), -Py, and -CH(2)Py groups ortho to the phenol hydroxyl group and tert-butyl groups in the 4,6-positions for stability (HOAr-NH(2), HOAr-Py, and HOAr-CH(2)Py, respectively; Py = pyridyl; Ph = phenyl). The photo-oxidations proceed by intramolecular proton transfer from the phenol to the pendent base concerted with electron transfer to the excited polyarene. For comparison, 2,4,6-(t)Bu(3)C(6)H(2)OH, a phenol without a pendent base and tert-butyl groups in the 2,4,6-positions, has also been examined. Many of these bimolecular reactions are fast, with rate constants near the diffusion limit. Combining the photochemical k(CPET) values with those from prior thermal stopped-flow kinetic studies gives data sets for the oxidations of HOAr-NH(2) and HOAr-CH(2)Py that span over 10(7) in k(CPET) and nearly 0.9 eV in driving force (ΔG(o)'). Plots of log(k(CPET)) vs ΔG(o)', including both excited-state anthracenes and ground state aminium radical cations, define a single Marcus parabola in each case. These two data sets are thus well described by semiclassical Marcus theory, providing a strong validation of the use of this theory for MS-CPET. The parabolas give λ(CPET) ≅ 1.15-1.2 eV and H(ab) ≅ 20-30 cm(-1). These experiments represent the most direct measurements of H(ab) for MS-CPET reactions to date. Although rate constants are available only up to the diffusion limit, the parabolas clearly peak well below the adiabatic limit of ca. 6 × 10(12) s(-1). Thus, this is a very clear demonstration that the reactions are nonadiabatic. The nonadiabatic character slows the reactions by a factor of ~45. Results for the oxidation of HOAr-Py, in which the phenol and base are conjugated, and for oxidation of 2,4,6-(t)Bu(3)C(6)H(2)OH, which lacks a base, show that both have substantially lower λ and larger pre-exponential terms. The implications of these results for MS-CPET reactions are discussed.
用激发态聚芳烃对氢键酚进行光氧化,以深入了解多部位协同质子-电子转移反应(MS-CPET)。实验研究了邻位酚羟基和 4,6-位叔丁基的酚碱,包括 -CPh(2)NH(2)、-Py 和 -CH(2)Py 基团(HOAr-NH(2)、HOAr-Py 和 HOAr-CH(2)Py,分别为吡啶基;Ph = 苯基)。光氧化通过酚的分子内质子转移到与电子转移到激发态聚芳烃协同进行。为了比较,还研究了没有邻位酚碱和 2,4,6-位叔丁基的 2,4,6-(t)Bu(3)C(6)H(2)OH 酚。这些双分子反应中有许多反应很快,速率常数接近扩散极限。将光化学 k(CPET)值与先前热停流动力学研究的值结合起来,得到 HOAr-NH(2)和 HOAr-CH(2)Py 氧化的数据集,其中 k(CPET)跨越 10(7),驱动力 (ΔG(o)') 接近 0.9 eV。包括激发态蒽和基态铵自由基阳离子的 log(k(CPET))与 ΔG(o)')的图在每种情况下都定义了单个马库斯抛物线。这两个数据集很好地符合半经典马库斯理论,为 MS-CPET 的使用提供了强有力的验证。抛物线给出 λ(CPET) ≅ 1.15-1.2 eV 和 H(ab) ≅ 20-30 cm(-1)。这些实验代表了迄今为止对 MS-CPET 反应最直接的 H(ab)测量。尽管仅在扩散极限处提供了速率常数,但抛物线明显低于约 6 × 10(12) s(-1)的绝热极限。因此,这清楚地表明反应是非绝热的。非绝热特征使反应速度减慢了约 45 倍。HOAr-Py 氧化(其中酚和碱共轭)和 2,4,6-(t)Bu(3)C(6)H(2)OH 氧化(无碱)的结果表明,两者的 λ 都低得多,且前指数项较大。讨论了这些结果对 MS-CPET 反应的影响。