CEMES-CNRS, Université de Toulouse, CNRS 29, rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France.
Nanoscale. 2018 Sep 13;10(35):16775-16786. doi: 10.1039/c8nr03263g.
Despite a clear development of innovative therapies based on stem cell manipulation, the availability of new tools to better understand and follow stem cell behavior and improve their biomedical applications is not adequate. Indeed, an ideal tracking device must have good ability to label stem cells as well as complete neutrality relative to their biology. Furthermore, preclinical studies imply in vitro and in vivo approaches that often require several kinds of labeling and/or detection procedures. Consequently, the multimodality concept presented in this work may present a solution to this problem as it has the potential to combine complementary imaging techniques. Spherical europium-doped gadolinium oxysulfide (Gd2O2S:Eu3+) nanoparticles are presented as a candidate as they are detectable by (1) magnetic resonance (MRI), (2) X-ray and (3) photoluminescence imaging. Whole body in vivo distribution, elimination and toxicity evaluation revealed a high tolerance of nanoparticles with a long-lasting MRI signal and slow hepatobiliary and renal clearance. In vitro labeling of a wide variety of cells unveils the nanoparticle potential for efficient and universal cell tracking. Emphasis on mesenchymal stromal cells (MSCs) leads to the definition of optimal conditions for labeling and tracking in the context of cell therapy: concentrations below 50 μg mL-1 and diameters between 170 and 300 nm. Viability, proliferation, migration and differentiation towards mesodermal lineages are preserved under these conditions, and cell labeling appears to be persistent and without any leakage. Ex vivo detection of as few as five thousand Gd2O2S:Eu3+-labeled MSCs by MRI combined with in vitro examination with fluorescence microscopy highlights the feasibility of cell tracking in cell therapy using this new nanoplatform.
尽管基于干细胞操作的创新疗法有了明显的发展,但缺乏更好地理解和跟踪干细胞行为并改善其生物医学应用的新工具。实际上,理想的跟踪设备必须具有良好的干细胞标记能力以及对其生物学的完全中性。此外,临床前研究涉及体外和体内方法,这些方法通常需要多种标记和/或检测程序。因此,本文提出的多模态概念可能是解决此问题的一种方法,因为它有可能结合互补的成像技术。呈现了球形掺铕的钆氧硫化物(Gd2O2S:Eu3+)纳米粒子作为候选物,因为它们可以通过(1)磁共振(MRI),(2)X 射线和(3)光致发光成像来检测。全身体内分布,消除和毒性评估显示出纳米粒子具有高耐受性,具有持久的 MRI 信号和缓慢的肝胆和肾脏清除率。对各种细胞的体外标记揭示了纳米粒子在高效和通用细胞跟踪方面的潜力。对间充质基质细胞(MSCs)的重视导致了在细胞治疗背景下标记和跟踪的最佳条件的定义:浓度低于 50μgmL-1和直径在 170 和 300nm 之间。在这些条件下,细胞活力,增殖,迁移和向中胚层谱系的分化得以保留,并且细胞标记似乎是持久的,没有任何泄漏。通过 MRI 结合荧光显微镜对体外检查检测到的数量少至五千个 Gd2O2S:Eu3+标记的 MSCs,突出了使用这种新纳米平台在细胞治疗中进行细胞跟踪的可行性。
Int J Nanomedicine. 2020-1-8
Nanomaterials (Basel). 2023-6-16
Front Cell Dev Biol. 2021-7-2
Regen Ther. 2020-11-28
Front Chem. 2020-3-31
Quant Imaging Med Surg. 2019-3
Stem Cells Int. 2019-1-8