Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
Nanotechnology. 2018 Nov 16;29(46):465402. doi: 10.1088/1361-6528/aadd6e. Epub 2018 Aug 29.
Development of bifunctional non-metal electrocatalyst for oxygen reduction reactions (ORRs) and oxygen evolution reactions (OERs) with high efficiency, durable stability and low cost is a crucial and challenging issue. However, the heteroatom-doped carbon material including a carbon-based conductive additive would be easily oxidized under the high potential needed for driving the OER. Besides, the interaction between the heteroatom-doped carbon material that possesses electrocatalyst activity and a carbon-based conductive additive is weak, affecting the performance of the electrocatalyst. In this context, we introduce CoS nanoparticles into a three-dimensional N-doped carbon framework (CoS/NCF) by a morphology-retaining pyrolysis of polyaniline/CoS framework precursor, in which the polyaniline framework provides abundant functional groups to nucleate and grow CoS nanoparticles while retaining its interconnected three-dimensional porous structure. Benefiting from (i) the lower OER potential of CoS nanoparticles than the electro-oxidation decomposition potential of a carbon material and (ii) the strong affinity of CoS nanoparticles for a N-doped carbon framework, higher stability than commercial Pt/C system and greater catalytic activity towards ORR with an onset potential of about 0.921 V versus reversible hydrogen electrode (RHE) are observed. Furthermore, only a potential of 1.515 V versus RHE is required for achieving a current density of 10 mA cm.
开发高效、稳定、低成本的双功能非金属电催化剂用于氧还原反应(ORRs)和氧析出反应(OERs)是一个关键且具有挑战性的问题。然而,包括碳基导电添加剂在内的杂原子掺杂碳材料在驱动 OER 所需的高电势下很容易被氧化。此外,具有电催化剂活性的杂原子掺杂碳材料与碳基导电添加剂之间的相互作用较弱,这会影响电催化剂的性能。在这种情况下,我们通过聚苯胺/CoS 骨架前体的保留形貌热解,将 CoS 纳米颗粒引入到三维 N 掺杂碳骨架(CoS/NCF)中,其中聚苯胺骨架提供了丰富的官能团来成核和生长 CoS 纳米颗粒,同时保留其相互连接的三维多孔结构。得益于 (i) CoS 纳米颗粒的 OER 电位低于碳材料的电氧化分解电位,以及 (ii) CoS 纳米颗粒对 N 掺杂碳骨架的强亲和力,与商业 Pt/C 体系相比,该催化剂具有更高的稳定性,对 ORR 的催化活性更高,其起始电位约为 0.921 V 相对于可逆氢电极 (RHE)。此外,仅需 1.515 V 相对于 RHE 的电势即可实现 10 mA cm 的电流密度。