Department of Biology, CoNISMa, University of Pisa, Via Derna 1, 56126, Pisa, Italy.
Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
Ecology. 2018 Dec;99(12):2654-2666. doi: 10.1002/ecy.2504. Epub 2018 Oct 18.
Understanding how increasing human domination of the biosphere affects life on earth is a critical research challenge. This task is facilitated by the increasing availability of open-source data repositories, which allow ecologists to address scientific questions at unprecedented spatial and temporal scales. Large datasets are mostly observational, so they may have limited ability to uncover causal relations among variables. Experiments are better suited at attributing causation, but they are often limited in scope. We propose hybrid datasets, resulting from the integration of observational with experimental data, as an approach to leverage the scope and ability to attribute causality in ecological studies. We show how the analysis of hybrid datasets with emerging techniques in time series analysis (Convergent Cross-mapping) and macroecology (Joint Species Distribution Models) can generate novel insights into causal effects of abiotic and biotic processes that would be difficult to achieve otherwise. We illustrate these principles with two case studies in marine ecosystems and discuss the potential to generalize across environments, species and ecological processes. If used wisely, the analysis of hybrid datasets may become the standard approach for research goals that seek causal explanations for large-scale ecological phenomena.
理解人类对生物圈的主宰程度如何影响地球上的生命是一个关键的研究挑战。这一任务得益于开源数据存储库的日益普及,这些存储库使生态学家能够以前所未有的时空尺度解决科学问题。大型数据集大多是观测性的,因此它们可能无法揭示变量之间的因果关系。实验更适合归因于因果关系,但它们的范围通常有限。我们提出了混合数据集,这是通过将观测数据与实验数据整合而成的一种方法,旨在利用生态学研究中的范围和归因因果关系的能力。我们展示了如何使用时间序列分析(趋同交叉映射)和宏观生态学(联合物种分布模型)中的新兴技术来分析混合数据集,从而产生难以通过其他方式获得的关于非生物和生物过程的因果效应的新见解。我们用两个海洋生态系统的案例研究来说明这些原则,并讨论了在环境、物种和生态过程中推广的潜力。如果明智地使用,混合数据集的分析可能成为寻求对大规模生态现象进行因果解释的研究目标的标准方法。