Suppr超能文献

控制胶体ZnSe纳米结构的各向异性生长。

Controlling Anisotropic Growth of Colloidal ZnSe Nanostructures.

作者信息

Ning Jiajia, Liu Jing, Levi-Kalisman Yael, Frenkel Anatoly I, Banin Uri

机构信息

Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel.

The Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel.

出版信息

J Am Chem Soc. 2018 Nov 7;140(44):14627-14637. doi: 10.1021/jacs.8b05941. Epub 2018 Sep 12.

Abstract

Semiconductor nanocrystals serve as outstanding model systems for studying quantum confined size and shape effects. Shape control is an important knob for controlling their properties but so far it has been well developed mainly for heavy-metal containing semiconductor nanocrystals, limiting their further widespread utilization. Herein, we report a synthesis of heavy-metal free ZnSe nanocrystals with shape and size control through utilization of well-defined molecular clusters. In this approach, ZnSe nanowires are synthesized and their length and shape control is achieved by introduction of controlled amounts of molecular clusters. As a result of Zn(SPh) clusters (Zn clusters) addition, short ZnSe nanorods or ZnSe nanodots can be obtained through tuning the ratio of Zn clusters to ZnSe. A study using transmission electron microscopy revealed the formation of a hybrid inorganic-organic nanowire, whereby the ligands form a template for self-assembly of ZnSe magic size clusters. The hybrid nanowire template becomes shorter and eventually disappears upon increasing amount of Zn clusters in the reaction. The generality of the method is demonstrated by using isostructural Cu(SPh) clusters, which presented a new approach to Cu doped ZnSe nanocrystals and provided also a unique opportunity to employ X-ray absorption fine structure spectroscopy for deciphering the changes in the local atomic-scale environment of the clusters and explaining their role in the process of the nanorods formation. Overall, the introduction of molecular clusters presented here opens a path for growth of colloidal semiconductor nanorods, expanding the palette of materials selection with obvious implications for optoelectronic and biomedical applications.

摘要

半导体纳米晶体是研究量子限域尺寸和形状效应的优秀模型系统。形状控制是控制其性质的一个重要手段,但到目前为止,它主要在含重金属的半导体纳米晶体中得到了很好的发展,限制了它们的进一步广泛应用。在此,我们报告了一种通过利用定义明确的分子簇来合成具有形状和尺寸可控的无重金属ZnSe纳米晶体的方法。在这种方法中,合成了ZnSe纳米线,并通过引入可控量的分子簇实现了其长度和形状的控制。由于添加了Zn(SPh)簇(Zn簇),通过调节Zn簇与ZnSe的比例可以获得短的ZnSe纳米棒或ZnSe纳米点。一项使用透射电子显微镜的研究揭示了一种无机-有机杂化纳米线的形成,其中配体形成了ZnSe神奇尺寸簇自组装的模板。随着反应中Zn簇数量的增加,杂化纳米线模板变得更短并最终消失。通过使用同构的Cu(SPh)簇证明了该方法的通用性,这为Cu掺杂的ZnSe纳米晶体提供了一种新方法,也为利用X射线吸收精细结构光谱来破译簇的局部原子尺度环境变化并解释它们在纳米棒形成过程中的作用提供了独特的机会。总体而言,这里引入的分子簇为胶体半导体纳米棒的生长开辟了一条道路,扩大了材料选择范围,对光电和生物医学应用具有明显的意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验