Suppr超能文献

用于血友病 A 的造血干细胞和祖细胞生物工程因子 VIII 慢病毒载体基因治疗的临床前开发。

Preclinical Development of a Hematopoietic Stem and Progenitor Cell Bioengineered Factor VIII Lentiviral Vector Gene Therapy for Hemophilia A.

机构信息

1 Aflac Cancer and Blood Disorders Center, Department of Pediatrics, School of Medicine, Emory University , Atlanta, Georgia; Christian Medical College , Vellore, India .

2 Expression Therapeutics, LLC , Tucker, Georgia; Christian Medical College , Vellore, India .

出版信息

Hum Gene Ther. 2018 Oct;29(10):1183-1201. doi: 10.1089/hum.2018.137.

Abstract

Genetically modified, autologous hematopoietic stem and progenitor cells (HSPCs) represent a new class of genetic medicine. Following this therapeutic paradigm, we are developing a product candidate, designated CD68-ET3-LV CD34, for the treatment of the severe bleeding disorder, hemophilia A. The product consists of autologous CD34 cells transduced with a human immunodeficiency virus 1-based, monocyte lineage-restricted, self-inactivating lentiviral vector (LV), termed CD68-ET3-LV, encoding a bioengineered coagulation factor VIII (fVIII) transgene, termed ET3, designed for enhanced expression. This vector was shown capable of high-titer manufacture under clinical scale and Good Manufacturing Practice. Biochemical and immunogenicity testing of recombinant ET3, as well as safety and efficacy testing of CD68-ET3-LV HSPCs, were utilized to demonstrate overall safety and efficacy in murine models. In the first model, administration of CD68-ET3-LV-transduced stem-cell antigen-1 cells to hemophilia A mice resulted in sustained plasma fVIII production and hemostatic correction without signs of toxicity. Patient-derived, autologous mobilized peripheral blood (mPB) CD34 cells are the clinical target cells for ex vivo transduction using CD68-ET3-LV, and the resulting genetically modified cells represent the investigational drug candidate. In the second model, CD68-ET3-LV gene transfer into mPB CD34 cells isolated from normal human donors was utilized to obtain in vitro and in vivo pharmacology, pharmacokinetic, and toxicology assessment. CD68-ET3-LV demonstrated reproducible and efficient gene transfer into mPB CD34 cells, with vector copy numbers in the range of 1 copy per diploid genome equivalent without affecting clonogenic potential. Differentiation of human CD34 cells into monocytes was associated with increased fVIII production, supporting the designed function of the CD68 promoter. To assess in vivo pharmacodynamics, CD68-ET3-LV CD34 cell product was administered to immunodeficient mice. Treated mice displayed sustained plasma fVIII levels and no signs of product related toxicity. Collectively, the findings of the current study support the preclinical safety and efficacy of CD68-ET3-LV CD34.

摘要

基因修饰的自体造血干细胞和祖细胞(HSPCs)代表了一类新型的基因治疗药物。基于这一治疗范例,我们正在开发一种候选产品,命名为 CD68-ET3-LV CD34,用于治疗严重的出血性疾病,即血友病 A。该产品由自体 CD34 细胞转导构建而成,转导所用的是一种基于人类免疫缺陷病毒 1 的、单核细胞谱系特异性、自我失活慢病毒载体(LV),称为 CD68-ET3-LV,它编码一种经过基因工程改造的凝血因子 VIII(fVIII)转基因,称为 ET3,旨在增强表达。该载体已被证明能够在临床规模和良好生产规范下进行高滴度生产。我们对重组 ET3 的生化和免疫原性进行了测试,对 CD68-ET3-LV HSPCs 的安全性和疗效进行了测试,以证明在小鼠模型中的总体安全性和疗效。在第一个模型中,向血友病 A 小鼠输注 CD68-ET3-LV 转导的干细胞抗原-1 细胞,导致持续的血浆 fVIII 产生和止血纠正,且没有毒性迹象。患者来源的自体动员外周血(mPB)CD34 细胞是使用 CD68-ET3-LV 进行体外转导的临床靶细胞,由此产生的基因修饰细胞代表了研究性候选药物。在第二个模型中,我们利用 CD68-ET3-LV 对从正常供体中分离的 mPB CD34 细胞进行基因转移,以获得体外和体内药理学、药代动力学和毒理学评估。CD68-ET3-LV 能够在不影响集落形成潜力的情况下,将载体拷贝数稳定地转移至 mPB CD34 细胞中,达到 1 个拷贝/二倍体基因组当量的范围。人 CD34 细胞向单核细胞分化与 fVIII 产量增加有关,支持 CD68 启动子的设计功能。为了评估体内药效动力学,我们将 CD68-ET3-LV CD34 细胞产品施用于免疫缺陷小鼠。接受治疗的小鼠显示出持续的血浆 fVIII 水平,且没有产品相关毒性的迹象。总的来说,当前研究的结果支持 CD68-ET3-LV CD34 的临床前安全性和疗效。

相似文献

2
Efficient production of human FVIII in hemophilic mice using lentiviral vectors.
Mol Ther. 2003 May;7(5 Pt 1):623-31. doi: 10.1016/s1525-0016(03)00073-x.
4
Recombinant factor VIII expression in hematopoietic cells following lentiviral transduction.
Gene Ther. 2003 Oct;10(22):1917-25. doi: 10.1038/sj.gt.3302093.
5
Directed engineering of a high-expression chimeric transgene as a strategy for gene therapy of hemophilia A.
Mol Ther. 2009 Jul;17(7):1145-54. doi: 10.1038/mt.2009.35. Epub 2009 Mar 3.
6
Sustained expansion and transgene expression of coagulation factor VIII-transduced cord blood-derived endothelial progenitor cells.
Arterioscler Thromb Vasc Biol. 2003 Dec;23(12):2266-72. doi: 10.1161/01.ATV.0000100403.78731.9F. Epub 2003 Oct 9.
10
The Immune Response to the fVIII Gene Therapy in Preclinical Models.
Front Immunol. 2020 Apr 15;11:494. doi: 10.3389/fimmu.2020.00494. eCollection 2020.

引用本文的文献

1
Clinical hematopoietic stem cell-based gene therapy.
Mol Ther. 2025 Jun 4;33(6):2663-2678. doi: 10.1016/j.ymthe.2025.04.029. Epub 2025 Apr 24.
2
Clinical perspective: Advancing hemophilia treatment through gene therapy approaches.
Mol Ther. 2025 Jun 4;33(6):2350-2362. doi: 10.1016/j.ymthe.2025.04.023. Epub 2025 Apr 21.
3
Gene therapy for hemophilia - From basic science to first approvals of "one-and-done" therapies.
Mol Ther. 2025 May 7;33(5):2015-2034. doi: 10.1016/j.ymthe.2025.03.043. Epub 2025 Mar 27.
4
Lentiviral Gene Therapy with CD34+ Hematopoietic Cells for Hemophilia A.
N Engl J Med. 2025 Jan 30;392(5):450-457. doi: 10.1056/NEJMoa2410597. Epub 2024 Dec 9.
5
Structural basis for inhibition of coagulation factor VIII reveals a shared antigenic hotspot on the C1 domain.
J Thromb Haemost. 2024 Sep;22(9):2449-2459. doi: 10.1016/j.jtha.2024.05.024. Epub 2024 Jun 5.
6
Non-viral and viral delivery systems for hemophilia A therapy: recent development and prospects.
Ann Hematol. 2024 May;103(5):1493-1511. doi: 10.1007/s00277-023-05459-0. Epub 2023 Nov 11.
7
In Vitro FVIII-Encoding Transgenic Mesenchymal Stem Cells Maintain Successful Coagulation in FVIII-Deficient Plasma Mimicking Hemophilia A.
Turk J Haematol. 2023 May 29;40(2):118-124. doi: 10.4274/tjh.galenos.2023.2022-0318. Epub 2023 Apr 6.
8
Comparison of different gene addition strategies to modify placental derived-mesenchymal stromal cells to produce FVIII.
Front Immunol. 2022 Dec 15;13:954984. doi: 10.3389/fimmu.2022.954984. eCollection 2022.
10
A novel preclinical model of mucopolysaccharidosis type II for developing human hematopoietic stem cell gene therapy.
Gene Ther. 2023 Apr;30(3-4):288-296. doi: 10.1038/s41434-022-00357-y. Epub 2022 Jul 14.

本文引用的文献

1
Target-Cell-Directed Bioengineering Approaches for Gene Therapy of Hemophilia A.
Mol Ther Methods Clin Dev. 2018 Jan 31;9:57-69. doi: 10.1016/j.omtm.2018.01.004. eCollection 2018 Jun 15.
2
Gene Therapy in a Patient with Sickle Cell Disease.
N Engl J Med. 2017 Mar 2;376(9):848-855. doi: 10.1056/NEJMoa1609677.
4
Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction.
Nat Biotechnol. 2017 Jan;35(1):35-37. doi: 10.1038/nbt.3677. Epub 2016 Sep 26.
5
High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors.
Blood. 2016 Oct 20;128(16):2055-2067. doi: 10.1182/blood-2016-02-701805. Epub 2016 Jul 5.
8
Effects of FVIII immunity on hepatocyte and hematopoietic stem cell-directed gene therapy of murine hemophilia A.
Mol Ther Methods Clin Dev. 2016 Feb 10;3:15056. doi: 10.1038/mtm.2015.56. eCollection 2016.
9
Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the β(A(T87Q))-Globin Gene.
Hum Gene Ther. 2016 Feb;27(2):148-65. doi: 10.1089/hum.2016.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验