Mhibik Oussama, Forget Sebastien, Ott Dan, Venus George, Divliansky Ivan, Glebov Leonid, Chénais Sebastien
Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France.
CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France.
Light Sci Appl. 2016 Feb 12;5(2):e16026. doi: 10.1038/lsa.2016.26. eCollection 2016 Feb.
Optically pumped lasers based on solution-processed thin-film gain media have recently emerged as low-cost, broadly tunable, and versatile active photonics components that can fit any substrate and are useful for, e.g., chemo- or biosensing or visible spectroscopy. Although single-mode operation has been demonstrated in various resonator architectures with a large variety of gain media-including dye-doped polymers, organic semiconductors, and, more recently, hybrid perovskites-the reported linewidths are typically on the order of a fraction of a nanometer or broader, i.e., the coherence lengths are no longer than a few millimeters, which does not enable high-resolution spectroscopy or coherent sensing. The linewidth is fundamentally constrained by the short photon cavity lifetime in the standard resonator geometries. We demonstrate here a novel structure for an organic thin-film solid-state laser that is based on a vertical external cavity, wherein a holographic volume Bragg grating ensures both spectral selection and output coupling in an otherwise very compact (∼cm) design. Under short-pulse (0.4 ns) pumping, Fourier-transform-limited laser pulses are obtained, with a full width at half-maximum linewidth of 900 MHz (1.25 pm). Using 20-ns-long pump pulses, the linewidth can be further reduced to 200 MHz (0.26 pm), which is four times above the Fourier limit and corresponds to an unprecedented coherence length of 1 m. The concept is potentially transferrable to any type of thin-film laser and can be ultimately made tunable; it also represents a very compact alternative to bulky grating systems in dye lasers.
基于溶液处理的薄膜增益介质的光泵浦激光器最近已成为低成本、广泛可调谐且通用的有源光子学组件,可适配任何衬底,例如可用于化学或生物传感或可见光谱学。尽管在各种谐振器架构中,使用包括染料掺杂聚合物、有机半导体以及最近的混合钙钛矿等多种增益介质都已实现了单模运转,但所报道的线宽通常在纳米级的几分之一或更宽的量级,即相干长度不超过几毫米,这无法实现高分辨率光谱学或相干传感。在标准谐振器几何结构中,线宽从根本上受到光子腔寿命短的限制。我们在此展示了一种基于垂直外腔的有机薄膜固态激光器的新颖结构,其中全息体布拉格光栅在一个非常紧凑(约厘米级)的设计中既确保了光谱选择又实现了输出耦合。在短脉冲(0.4纳秒)泵浦下,获得了傅里叶变换极限的激光脉冲,其半高全宽线宽为900兆赫兹(1.25皮米)。使用20纳秒长的泵浦脉冲时,线宽可进一步减小至200兆赫兹(0.26皮米),这比傅里叶极限高出四倍,对应着前所未有的1米相干长度。该概念有可能转移到任何类型的薄膜激光器上,并且最终可实现可调谐;它也是染料激光器中笨重光栅系统的一种非常紧凑的替代方案。