Shehzad Rao Aqil, Muhammad Shabbir, Iqbal Javed, Al-Sehemi Abdullah G, Yaseen Muhammad, Aloui Zouhaier, Khalid Muhammad
Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
Research Center for Advanced Material Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.
J Mol Model. 2021 Jan 5;27(1):12. doi: 10.1007/s00894-020-04619-7.
In the present investigation, we use a dual computational approach (at single molecular and solid-state levels) to explore the optoelectronic and nonlinear optical (NLO) properties of cross-shaped derivatives. The solid-state electronic band structures of the compounds 1-3 (the derivatives of tetracarboxylic acid in cross-shaped having the core of benzene (1), pyrazinoquinoxaline (2), and tetrathiafulvalene (3)) are calculated. The calculated band gaps for compounds 1-2 are found to be direct bad gaps and compound 3 to be indirect bad gap with energy gaps of 2.749, 1.765, and 0.875 eV, respectively. The important optical properties including refractive index, absorption coefficients, loss functions, and extinction coefficient of these semiconductors are calculated at bulk level to seek their potential applications as efficient optoelectronic materials. Additionally, we use the Lorentz approximation to calculate the third-order NLO susceptibilities of compounds 1-3 using the molecular hyperpolarizability and solid-state parameters. The calculated third-order NLO susceptibilities of compounds 1-3 are found to be 6.92 × 10, 64.0 × 10, and 26.3 × 10 esu, respectively. Thus, the present study not only provides a way to connect the calculated third-order molecular NLO polarizability to NLO susceptibilities for compounds 1-3 through Lorentz approximation but also highlights the importance of central core modifications on their NLO susceptibilities.
在本研究中,我们采用双计算方法(在单分子和固态水平)来探索十字形衍生物的光电和非线性光学(NLO)性质。计算了化合物1-3(以苯(1)、吡嗪并喹喔啉(2)和四硫富瓦烯(3)为核心的十字形四羧酸衍生物)的固态电子能带结构。发现化合物1-2的计算带隙为直接带隙,化合物3为间接带隙,能隙分别为2.749、1.765和0.875 eV。在体相水平计算了这些半导体的重要光学性质,包括折射率、吸收系数、损耗函数和消光系数,以寻找它们作为高效光电材料的潜在应用。此外,我们使用洛伦兹近似,利用分子超极化率和固态参数计算化合物1-3的三阶NLO极化率。发现化合物1-3的计算三阶NLO极化率分别为6.92×10、64.0×10和26.3×10 esu。因此,本研究不仅提供了一种通过洛伦兹近似将计算得到的化合物1-3的三阶分子NLO极化率与NLO极化率联系起来的方法,还突出了中心核修饰对其NLO极化率的重要性。