Checcucci Simona, Lombardi Pietro, Rizvi Sahrish, Sgrignuoli Fabrizio, Gruhler Nico, Dieleman Frederik Bc, S Cataliotti Francesco, Pernice Wolfram Hp, Agio Mario, Toninelli Costanza
European Laboratory for Nonlinear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy.
National Institute of Optics (CNR-INO), 50019 Sesto Fiorentino, Italy.
Light Sci Appl. 2017 Apr 7;6(4):e16245. doi: 10.1038/lsa.2016.245. eCollection 2017 Apr.
The efficient interaction of light with quantum emitters is crucial to most applications in nano and quantum photonics, such as sensing or quantum information processing. Effective excitation and photon extraction are particularly important for the weak signals emitted by a single atom or molecule. Recent works have introduced novel collection strategies, which demonstrate that large efficiencies can be achieved by either planar dielectric antennas combined with high numerical aperture objectives or optical nanostructures that beam emission into a narrow angular distribution. However, the first approach requires the use of elaborate collection optics, while the latter is based on accurate positioning of the quantum emitter near complex nanoscale architectures; hence, sophisticated fabrication and experimental capabilities are needed. Here we present a theoretical and experimental demonstration of a planar optical antenna that beams light emitted by a single molecule, which results in increased collection efficiency at small angles without stringent requirements on the emitter position. The proposed device exhibits broadband performance and is spectrally scalable, and it is simple to fabricate and therefore applies to a wide range of quantum emitters. Our design finds immediate application in spectroscopy, quantum optics and sensing.
光与量子发射器的有效相互作用对于纳米和量子光子学中的大多数应用至关重要,例如传感或量子信息处理。对于单个原子或分子发出的微弱信号而言,有效的激发和光子提取尤为重要。近期的研究工作引入了新颖的收集策略,这些策略表明,通过结合高数值孔径物镜的平面介质天线或能将发射光束聚焦到窄角分布的光学纳米结构,均可实现较高的效率。然而,第一种方法需要使用精密的收集光学器件,而后者则基于量子发射器在复杂纳米级结构附近的精确定位;因此,需要复杂的制造和实验能力。在此,我们展示了一种平面光学天线的理论和实验结果,该天线能将单个分子发出的光束聚焦,从而在小角度下提高收集效率,且对发射器位置没有严格要求。所提出的器件具有宽带性能且在光谱上具有可扩展性,易于制造,因此适用于广泛的量子发射器。我们的设计在光谱学、量子光学和传感领域有直接应用。