Waterhouse Brian, Hartford Alan, Mukhopadhyay Saurabh, Ferguson Ryan, Hendrickson Barbara A
Biostatistics and Research Decision Sciences, Merck Research Laboratories, Upper Gwynedd, Pennsylvania, USA.
Statistical & Quantitative Sciences, Takeda Pharmaceutical Co. Limited, Cambridge, Massachusetts, USA.
Pharm Stat. 2022 Mar;21(2):372-385. doi: 10.1002/pst.2175. Epub 2021 Nov 2.
In the Sponsor Responsibilities-Safety Reporting Requirements and Safety Assessment for IND and Bioavailability/Bioequivalence Studies: Draft Guidance for Industry (June 2021) the Food and Drug Administration recommends that sponsors develop a Safety Surveillance Plan as a key element of a systematic approach to safety surveillance and describes two possible approaches to assess the aggregate safety data. One approach regularly analyzes unblinded serious adverse events (SAEs) by treatment group. The alternative approach prespecifies estimated background rates for anticipated SAEs in the study population (e.g., myocardial infarctions in an older adult population). If the event rate in the blinded data from the study population exceeds a "trigger rate," then an unblinded analysis by treatment group is conducted. The Bayesian detection of potential risk using inference on blinded safety data (BDRIBS) method has been previously described and offers a quantitative approach for assessing blinded events. In this article we provide a procedural workflow for blinded review of safety data that is consistent with the unblinding "trigger approach" for aggregate safety review. In addition, this publication contextualizes the use of BDRIBS within the broader safety surveillance framework, extends the method to allow for multiple studies, and offers examples of its use in various settings via an R-Shiny application that allows for dynamic visualization and assessment.
在《申办者职责 - 新药临床试验申请(IND)及生物利用度/生物等效性研究的安全性报告要求和安全性评估:行业指南草案》(2021年6月)中,美国食品药品监督管理局建议申办者制定一份安全性监测计划,作为安全性监测系统方法的关键要素,并描述了两种评估总体安全性数据的可能方法。一种方法是按治疗组定期分析未设盲的严重不良事件(SAE)。另一种方法是预先设定研究人群中预期SAE的估计背景发生率(例如,老年人群中的心肌梗死)。如果研究人群的设盲数据中的事件发生率超过“触发率”,则按治疗组进行未设盲分析。先前已描述了使用盲态安全性数据推断法(BDRIBS)进行潜在风险的贝叶斯检测,该方法为评估盲态事件提供了一种定量方法。在本文中,我们提供了一个与总体安全性审查的“触发式未设盲方法”一致的安全性数据盲态审查程序工作流程。此外,本出版物将BDRIBS的使用置于更广泛的安全性监测框架中,扩展了该方法以允许进行多项研究,并通过一个允许动态可视化和评估的R-Shiny应用程序提供了其在各种情况下的使用示例。