Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
Soft Matter. 2018 Sep 26;14(37):7634-7644. doi: 10.1039/c8sm01403e.
We elucidate the elastic behavior of a wormlike chain in 3D under compression and provide exact solutions for the experimentally accessible force-extension relation in terms of generalized spheroidal wave functions. In striking contrast to the classical Euler buckling instability, the force-extension relation of a clamped semiflexible polymer exhibits a smooth crossover from an almost stretched to a buckled configuration. In particular, the associated susceptibility, which measures the strength of the response of the polymer to the applied force, displays a prominent peak in the vicinity of the critical Euler buckling force. For increasing persistence length, the force-extension relation and the susceptibility of semiflexible polymers approach the behavior of a classical rod, whereas thermal fluctuations permit more flexible polymers to resist the applied force. Furthermore, we find that semiflexible polymers confined to 2D can oppose the applied force more strongly than in 3D.
我们阐明了在压缩下 3D 中蠕虫链的弹性行为,并提供了广义球谐函数的实验可及力-伸长关系的精确解。与经典的 Euler 屈曲不稳定性形成鲜明对比的是,固定半刚性聚合物的力-伸长关系从几乎拉伸到屈曲构型平稳过渡。特别是,关联的磁化率,它衡量聚合物对施加力的响应强度,在临界 Euler 屈曲力附近显示出明显的峰值。对于增加的持久长度,半刚性聚合物的力-伸长关系和磁化率接近经典棒的行为,而热波动允许更灵活的聚合物抵抗施加的力。此外,我们发现限制在 2D 中的半刚性聚合物可以比在 3D 中更强烈地抵抗施加的力。