Synthetic Bioengineering Laboratory, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
FEMS Microbiol Lett. 2018 Oct 1;365(20). doi: 10.1093/femsle/fny215.
Recent advances in DNA synthesis and computer science have enabled the de novo design of biosynthetic pathways. Numerous computational tools are currently available for searching biosynthetic pathways and ranking them on the basis of multiple criteria for installation into microbial chassis strains. This new framework allows the design of artificial biosynthetic pathways without expert knowledge of the specific biochemical reactions involved. Moreover, genetic apparatuses with quantitative and predictable properties enable rational construction of gene circuits. Thus, our ability to construct microbial cells specialized for bio-production is accelerating. However, many synthetic biology tools have not yet been fully applied to metabolic engineering owing to the lack of interdisciplinary collaboration between metabolic engineers and synthetic biologists. Therefore, we have focused on discussing how synthetic biology tools can be applied to de novo design of biosynthetic pathways.
近年来,DNA 合成和计算机科学的进步使得从头设计生物合成途径成为可能。目前有许多计算工具可用于搜索生物合成途径,并根据多种标准对其进行排名,以便将其安装到微生物底盘菌株中。这个新框架允许设计人工生物合成途径,而无需了解涉及的具体生化反应的专业知识。此外,具有定量和可预测特性的遗传装置能够实现基因电路的合理构建。因此,我们构建专门用于生物生产的微生物细胞的能力正在加速。然而,由于代谢工程师和合成生物学家之间缺乏跨学科合作,许多合成生物学工具尚未完全应用于代谢工程。因此,我们专注于讨论如何将合成生物学工具应用于生物合成途径的从头设计。