Conrad Sabrina, Kumar Prashant, Xue Feng, Ren Limin, Henning Sheryl, Xiao Chunhong, Mkhoyan K Andre, Tsapatsis Michael
Department of Chemical Engineering and Materials Science, University of Minnesota, Washington Ave SE, Minneapolis, MN, 55455, USA.
Thermo Fisher Scientific, 5225 Verona Road, Madison, WI, 53711, USA.
Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13592-13597. doi: 10.1002/anie.201809921. Epub 2018 Sep 19.
Amorphous zeolitic imidazolate frameworks (ZIFs) offer promising applications as novel functional materials. Herein, amorphization of ZIF-L through scanning-electron-beam exposure is demonstrated, based on amorphization of individual ZIF-L crystals. The amorphized ZIF product has drastically increased stability against dissolution in water. An electron dose that allows for complete preservation of amorphous particles after immersion in water is established, resulting in new shapes of amorphous ZIF-L with spatial control at the sub-micrometer length scale. Changed water stability as a consequence of scanning-electron-beam exposure is demonstrated for three additional metal-organic frameworks (ZIF-8, Zn(BeIm)OAc, MIL-101), highlighting the potential use of an electron beam for top-down MOF patterning. Lastly, recrystallization of ZIF-L in the presence of linker is studied and shows distinct differences for crystalline and amorphized material.
非晶态沸石咪唑酯骨架材料(ZIFs)作为新型功能材料具有广阔的应用前景。在此,基于单个ZIF-L晶体的非晶化,展示了通过扫描电子束曝光使ZIF-L非晶化的过程。非晶化的ZIF产物在水中的溶解稳定性大幅提高。确定了一种电子剂量,该剂量能使非晶颗粒在浸入水中后完全保留,从而产生了在亚微米长度尺度上具有空间可控性的新型非晶ZIF-L形状。对于另外三种金属有机骨架材料(ZIF-8、Zn(BeIm)OAc、MIL-101),也展示了扫描电子束曝光导致的水稳定性变化,突出了电子束在自上而下的金属有机骨架图案化中的潜在用途。最后,研究了在连接体存在下ZIF-L的重结晶情况,结果表明结晶材料和非晶化材料存在明显差异。