Amselem S, Barenholz Y, Loyter A, Nir S, Lichtenberg D
Biochim Biophys Acta. 1986 Aug 21;860(2):301-13. doi: 10.1016/0005-2736(86)90527-4.
Sendai virus particles fuse with negatively charged liposomes but not with vesicles made of zwitterionic phospholipids. The liposome-virus fusion process was studied by dilution of the concentration-dependent excimer-forming fluorophore 2-pyrenyldodecanoylphosphatidylcholine contained in the liposomes by the viral lipids. The data were analyzed in the framework of a mass action kinetic model. This provided analytical solutions for the final levels of probe dilution and numerical solutions for the kinetics of the overall fusion process, in terms of rate constants for the liposome-virus adhesion, deadhesion and fusion. This analysis led to the following conclusions: At neutral pH and 37 degrees C, only 15% of the virus particles can fuse with the phospholipid vesicles, although all the virions may aggregate with the liposomes. The rate constants for aggregation, fusion and deadhesion are of the orders of magnitude of 10(7) M-1 X s-1, 10(-3) s-1 and 10(-2), s-1, respectively. The fraction of active virus increases with temperature. At acidic pH, both the fraction of 'fusable' virus and the rate of fusion increase markedly. The optimal pH for fusion is 3-4, where most of the virus particles are active. At higher pH values, an increasing fraction of the virus particles become inactive, probably due to ionization of viral glycoproteins, whereas at pH values below 3.0 the fusion is markedly reduced, most likely due to protonation of the negatively charged vesicles. While only 15% of the virions fuse with the liposomes at pH 7.4 and 37 degrees C, all the liposomes lose their content (Amselem, S., Loyter, A. Lichtenberg, D. and Barenholz, Y. (1985) Biochim. Biophys. Acta 820, 1-10). We therefore propose that release of entrapped solutes is due to liposome-virus aggregation, and not to fusion. Both trypsinization and heat inactivation of the virus particles inhibit not only the fusion process but also the release of carboxyfluorescein. This demonstrates the obligatory role of viral membrane proteins in liposome-virus aggregation. Reconstituted vesicles made of the viral lipid and the hemagglutinin/neuraminidase (HN) glycoprotein fuse with negatively charged liposomes similar to the intact virions. This suggests that the fusion of virions with negatively charged vesicles, unlike the fusion of the virus with biological membranes, requires only the HN and not the fusion glycoprotein.
仙台病毒颗粒可与带负电荷的脂质体融合,但不能与两性离子磷脂制成的囊泡融合。通过病毒脂质对脂质体中所含浓度依赖性准分子形成荧光团2-芘十二酰磷脂酰胆碱的稀释,研究了脂质体-病毒融合过程。数据在质量作用动力学模型框架内进行分析。这为探针稀释的最终水平提供了分析解决方案,并为整个融合过程的动力学提供了数值解决方案,具体涉及脂质体-病毒粘附、脱粘附和融合的速率常数。该分析得出以下结论:在中性pH值和37℃条件下,尽管所有病毒粒子都可能与脂质体聚集,但只有15%的病毒粒子能与磷脂囊泡融合。聚集、融合和脱粘附的速率常数分别为10⁷ M⁻¹·s⁻¹、10⁻³ s⁻¹和10⁻² s⁻¹数量级。活性病毒的比例随温度升高而增加。在酸性pH值下,“可融合”病毒的比例和融合速率均显著增加。融合的最佳pH值为3-4,此时大多数病毒粒子具有活性。在较高pH值下,越来越多的病毒粒子变得无活性,可能是由于病毒糖蛋白的电离,而在pH值低于3.0时,融合显著降低,最可能是由于带负电荷囊泡的质子化。虽然在pH 7.4和37℃时只有15%的病毒粒子与脂质体融合,但所有脂质体都失去了其内容物(阿姆塞勒姆,S.,洛伊特,A.,利希滕贝格,D.和巴伦霍尔兹,Y.(1985年)《生物化学与生物物理学报》820,1-10)。因此,我们提出被困溶质的释放是由于脂质体-病毒聚集,而不是融合。病毒粒子的胰蛋白酶处理和热失活不仅抑制融合过程,还抑制羧基荧光素的释放。这证明了病毒膜蛋白在脂质体-病毒聚集中的必要作用。由病毒脂质和血凝素/神经氨酸酶(HN)糖蛋白制成的重组囊泡与带负电荷的脂质体融合,类似于完整病毒粒子。这表明病毒粒子与带负电荷囊泡的融合,与病毒与生物膜的融合不同,只需要HN而不需要融合糖蛋白。