Suppr超能文献

感觉神经元在冬眠期间进入兴奋状态改变。

Somatosensory Neurons Enter a State of Altered Excitability during Hibernation.

机构信息

Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06510, USA.

Department of Biology, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.

出版信息

Curr Biol. 2018 Sep 24;28(18):2998-3004.e3. doi: 10.1016/j.cub.2018.07.020. Epub 2018 Aug 30.

Abstract

Hibernation in mammals involves prolonged periods of inactivity, hypothermia, hypometabolism, and decreased somatosensation. Peripheral somatosensory neurons play an essential role in the detection and transmission of sensory information to CNS and in the generation of adaptive responses. During hibernation, when body temperature drops to as low as 2°C, animals dramatically reduce their sensitivity to physical cues [1, 2]. It is well established that, in non-hibernators, cold exposure suppresses energy production, leading to dissipation of the ionic and electrical gradients across the plasma membrane and, in the case of neurons, inhibiting the generation of action potentials [3]. Conceivably, such cold-induced elimination of electrogenesis could be part of a general mechanism that inhibits sensory abilities in hibernators. However, when hibernators become active, the bodily functions-including the ability to sense environmental cues-return to normal within hours, suggesting the existence of mechanisms supporting basal functionality of cells during torpor and rapid restoration of activity upon arousal. We tested this by comparing properties of somatosensory neurons from active and torpid thirteen-lined ground squirrels (Ictidomys tridecemlineatus). We found that torpid neurons can compensate for cold-induced functional deficits, resulting in unaltered resting potential, input resistance, and rheobase. Torpid neurons can generate action potentials but manifest markedly altered firing patterns, partially due to decreased activity of voltage-gated sodium channels. Our results provide insights into the mechanism that preserves somatosensory neurons in a semi-active state, enabling fast restoration of sensory function upon arousal. These findings contribute to the development of strategies enabling therapeutic hypothermia and hypometabolism.

摘要

哺乳动物的冬眠涉及长时间的不活动、体温降低、代谢降低和躯体感觉减退。外周躯体感觉神经元在检测和向中枢神经系统传递感觉信息以及产生适应性反应方面发挥着重要作用。在冬眠期间,当体温降至 2°C 左右时,动物对物理线索的敏感性会显著降低[1,2]。众所周知,在非冬眠动物中,寒冷暴露会抑制能量产生,导致跨质膜离子和电梯度耗散,如果是神经元,则会抑制动作电位的产生[3]。可以想象,这种冷诱导的电产生消除可能是一种普遍机制的一部分,该机制抑制了冬眠动物的感觉能力。然而,当冬眠动物变得活跃时,身体功能——包括感知环境线索的能力——在数小时内恢复正常,这表明存在支持细胞在蛰伏期间基本功能和快速恢复活动的机制。我们通过比较活跃和蛰伏的十三线地松鼠(Ictidomys tridecemlineatus)的躯体感觉神经元的特性来验证这一点。我们发现,蛰伏神经元可以补偿冷诱导的功能缺陷,导致静息电位、输入电阻和最小刺激强度不变。蛰伏神经元可以产生动作电位,但表现出明显改变的放电模式,部分原因是电压门控钠离子通道活性降低。我们的研究结果为维持躯体感觉神经元处于半活跃状态的机制提供了深入的了解,从而能够在觉醒时快速恢复感觉功能。这些发现有助于制定策略,实现治疗性低温和低代谢。

相似文献

1
Somatosensory Neurons Enter a State of Altered Excitability during Hibernation.感觉神经元在冬眠期间进入兴奋状态改变。
Curr Biol. 2018 Sep 24;28(18):2998-3004.e3. doi: 10.1016/j.cub.2018.07.020. Epub 2018 Aug 30.
7
The hibernating 13-lined ground squirrel as a model organism for potential cold storage of platelets.作为血小板低温储存潜在模型的冬眠 13 线地松鼠。
Am J Physiol Regul Integr Comp Physiol. 2012 May 15;302(10):R1202-8. doi: 10.1152/ajpregu.00018.2012. Epub 2012 Apr 4.

本文引用的文献

2
TRPs et al.: a molecular toolkit for thermosensory adaptations.瞬时受体电位通道等:热敏适应的分子工具包。
Pflugers Arch. 2018 May;470(5):745-759. doi: 10.1007/s00424-018-2120-5. Epub 2018 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验