Vasylyev Dmytro V, Han Chongyang, Zhao Peng, Dib-Hajj Sulayman, Waxman Stephen G
Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and.
J Neurophysiol. 2014 Apr;111(7):1429-43. doi: 10.1152/jn.00763.2013. Epub 2014 Jan 8.
The link between sodium channel Nav1.7 and pain has been strengthened by identification of gain-of-function mutations in patients with inherited erythromelalgia (IEM), a genetic model of neuropathic pain in humans. A firm mechanistic link to nociceptor dysfunction has been precluded because assessments of the effect of the mutations on nociceptor function have thus far depended on electrophysiological recordings from dorsal root ganglia (DRG) neurons transfected with wild-type (WT) or mutant Nav1.7 channels, which do not permit accurate calibration of the level of Nav1.7 channel expression. Here, we report an analysis of the function of WT Nav1.7 and IEM L858H mutation within small DRG neurons using dynamic-clamp. We describe the functional relationship between current threshold for action potential generation and the level of WT Nav1.7 conductance in primary nociceptive neurons and demonstrate the basis for hyperexcitability at physiologically relevant levels of L858H channel conductance. We demonstrate that the L858H mutation, when modeled using dynamic-clamp at physiological levels within DRG neurons, produces a dramatically enhanced persistent current, resulting in 27-fold amplification of net sodium influx during subthreshold depolarizations and even greater amplification during interspike intervals, which provide a mechanistic basis for reduced current threshold and enhanced action potential firing probability. These results show, for the first time, a linear correlation between the level of Nav1.7 conductance and current threshold in DRG neurons. Our observations demonstrate changes in sodium influx that provide a mechanistic link between the altered biophysical properties of a mutant Nav1.7 channel and nociceptor hyperexcitability underlying the pain phenotype in IEM.
钠通道Nav1.7与疼痛之间的联系因遗传性红斑性肢痛症(IEM)患者中功能获得性突变的发现而得到加强,IEM是人类神经性疼痛的一种遗传模型。由于迄今为止对突变对伤害感受器功能影响的评估依赖于用野生型(WT)或突变型Nav1.7通道转染的背根神经节(DRG)神经元的电生理记录,而这种记录无法准确校准Nav1.7通道表达水平,因此尚未建立与伤害感受器功能障碍的确切机制联系。在此,我们报告了一项使用动态钳技术对小DRG神经元内WT Nav1.7和IEM L858H突变功能的分析。我们描述了初级伤害性神经元中动作电位产生的电流阈值与WT Nav1.7电导水平之间的功能关系,并证明了在生理相关水平的L858H通道电导下兴奋性增高的基础。我们证明,当在DRG神经元内的生理水平使用动态钳技术模拟L858H突变时,会产生显著增强的持续电流,导致阈下去极化期间净钠内流放大27倍,在动作电位间期放大倍数更高,这为降低电流阈值和提高动作电位发放概率提供了机制基础。这些结果首次表明DRG神经元中Nav1.7电导水平与电流阈值之间存在线性相关性。我们的观察结果表明钠内流的变化为突变型Nav1.7通道改变的生物物理特性与IEM疼痛表型背后的伤害感受器兴奋性增高之间提供了机制联系。