State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.
Sci Total Environ. 2019 Feb 1;649:515-525. doi: 10.1016/j.scitotenv.2018.08.369. Epub 2018 Aug 28.
Frozen ground degradation profoundly impacts the hydrology, ecology and human society on the Tibetan Plateau (TP) and the downstream regions. The spatial distribution and potential changes of permafrost and maximum thickness of seasonally frozen ground (MTSFG) on the TP is of great importance and needs more in-depth studies. This study maps the permafrost and MTSFG distribution in the baseline period (2003-2010) and in the future (2040s and 2090s) with 1-km resolution. Logistic regression (LR), support vector machine (SVM) and random forest (RF) are validated using 106 borehole observations and proved to be applicable in estimating permafrost distribution. According to the majority voting results of the three algorithms, 45.9% area of the TP is underlain by permafrost in the baseline period, and respectively 25.9% and 43.9% of the current permafrost will disappear by the 2040s and the 2090s projected by mean of the projections from the five General Circulation Models under the Representative Concentration Pathway 4.5 scenario. SVM performs better in spatial generalization than RF based on the results of nested cross validation. According to the MTSFG results derived from SVM, the most dramatic decrease in MTSFG will occur in the southwestern TP, which is projected to exceed 50 cm in the 2090s compared with the baseline period. This study introduces the statistics and machine learning algorithms to frozen ground estimation on the TP, and the high resolution permafrost and MTSFG maps produced by this study can provide useful information for future studies on the third pole region.
多年冻土退化深刻影响着青藏高原(TP)及其下游地区的水文学、生态学和人类社会。TP 多年冻土和季节融化层最大厚度(MTSFG)的空间分布和潜在变化非常重要,需要更深入的研究。本研究以 1km 分辨率绘制了基准期(2003-2010 年)和未来(2040 年代和 2090 年代)多年冻土和 MTSFG 的分布。逻辑回归(LR)、支持向量机(SVM)和随机森林(RF)通过 106 个钻孔观测进行验证,结果表明这些算法适用于估计多年冻土的分布。根据这三种算法的多数投票结果,在基准期,TP 约有 45.9%的面积为多年冻土,根据代表浓度路径 4.5 情景下的五个通用环流模型的预测结果,到 2040 年代和 2090 年代,目前的多年冻土将分别有 25.9%和 43.9%消失。基于嵌套交叉验证的结果,SVM 在空间泛化方面的表现优于 RF。根据 SVM 得出的 MTSFG 结果,MTSFG 减少幅度最大的地区将出现在青藏高原西南部,预计到 2090 年代,与基准期相比,MTSFG 将减少超过 50cm。本研究将统计和机器学习算法引入青藏高原多年冻土的估算,本研究生成的高分辨率多年冻土和 MTSFG 图可为未来对第三极地区的研究提供有用信息。