Tan Xiaoqing, Luo Siqiong, Li Hongmei, Li Zhuoqun, Dong Qingxue
State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Sci Data. 2025 May 27;12(1):882. doi: 10.1038/s41597-025-04910-3.
Changes in soil temperature (ST) in the Three River Source Region (TRSR) significantly influence regional climate, ecology, and hydrological processes. However, existing models and reanalysis data exhibit considerable deviations in ST due to limitations in physical processes and parameterization schemes. To address this issue, we developed a new ST dataset using the Random Forest method (RFST), integrating observed ST data with relevant gridded datasets. RFST provides monthly ST data at nine layers with a spatial resolution of 0.01° × 0.01° from 1982 to 2015. Validation against two soil observation networks and six meteorological stations shows that the Nash-Sutcliffe Efficiency (NSE) of RFST exceeds 0.7 at all depths. Compared to ERA5 and CRA40, RFST corrects the cold bias, improves NSE, and reduces RMSE from 4 °C-8 °C to 1 °C-2 °C. RFST not only corrects the underestimation of ST and its warming rate but also aligns more closely with observed values for surface freezing and thawing indices as well as soil freeze-thaw periods, providing a more accurate representation of soil thermal conditions in the TRSR.
三江源地区(TRSR)土壤温度(ST)的变化对区域气候、生态和水文过程有显著影响。然而,由于物理过程和参数化方案的限制,现有模型和再分析数据在土壤温度方面存在相当大的偏差。为了解决这个问题,我们使用随机森林方法(RFST)开发了一个新的土壤温度数据集,将观测到的土壤温度数据与相关的网格化数据集相结合。RFST提供了1982年至2015年期间九层的月度土壤温度数据,空间分辨率为0.01°×0.01°。与两个土壤观测网络和六个气象站的验证表明,RFST在所有深度的纳什-萨特克利夫效率(NSE)均超过0.7。与ERA5和CRA40相比,RFST校正了冷偏差,提高了NSE,并将均方根误差(RMSE)从4°C - 8°C降低到1°C - 2°C。RFST不仅校正了土壤温度及其升温速率的低估,而且在地表冻结和解冻指数以及土壤冻融期方面与观测值更紧密地对齐,更准确地反映了三江源地区的土壤热状况。