GIRO, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, E08140 Caldes de Montbui, Barcelona, Catalonia, Spain.
GIRO, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, E08140 Caldes de Montbui, Barcelona, Catalonia, Spain; Department of Microbiology, University of Barcelona, UB. Av. Diagonal, 643, E08028, Barcelona, Catalonia, Spain.
Sci Total Environ. 2019 Feb 1;649:760-769. doi: 10.1016/j.scitotenv.2018.08.165. Epub 2018 Aug 14.
The effect of ammonia on methanogenic biomass from a full-scale agricultural digester treating nitrogen-rich materials was characterized in batch activity assays subjected to increasing concentrations of total ammonia N. Acetotrophic and methanogenic profiles displayed prolonged lag phases and reduced specific activity rates at 6.0 gN-TAN L, though identical methane yields were ultimately reached. These results agreed with the expression levels of selected genes from bacteria and methanogenic archaea (qPCR of 16S rRNA and mrcA cDNA transcripts). Compound-specific isotope analysis of biogas indicated that ammonia exposure was associated to a transition in methanogenic activity from acetotrophy at 1.0 gN-TAN L to intermediate and complete hydrogenotrophy at 3.5 and 6.0 gN-TAN L. Such pattern matched the results of 16S-Illumina sequencing of genes and transcripts in that predominant methanogens shifted, along with increasing ammonia, from the obligate acetotroph Methanosaeta to the hydrogenotrophic Methanoculleus and the poorly understood methylotrophic Methanomassiliicoccus. The underlying bacterial community structure remained rather stable but, at 6.0 gN-TAN L, the expression level increased considerably for a number of ribotypes that are related to potentially syntrophic genera (e.g. Clostridium, Bellilinea, Longilinea, and Bacteroides). The predominance of hydrogenotrophy at high ammonia levels clearly points to the occurrence of the syntrophic acetate oxidation (SAO), but known SAO bacteria were only found in very low numbers. The potential role of the identified bacterial and archaeal taxa with a view on SAO and on stability of the anaerobic digestion process under ammonia stress has been discussed.
采用批次活性测定法,研究了氨对处理富氮物质的规模化农业消化器中产甲烷生物质的影响,该测定法中,总氨氮(TAN)浓度逐渐增加。在 6.0 gN-TAN L 时,乙酸营养型和产甲烷 profiles 显示出延长的迟滞期和降低的比活性,尽管最终达到了相同的甲烷产率。这些结果与来自细菌和产甲烷古菌的选定基因的表达水平一致(16S rRNA 和 mrcA cDNA 转录物的 qPCR)。沼气的化合物特异性同位素分析表明,氨暴露与产甲烷活性从 1.0 gN-TAN L 时的乙酸营养型向 3.5 和 6.0 gN-TAN L 时的中间和完全氢营养型的转变有关。这种模式与 16S-Illumina 测序基因和转录物的结果相匹配,即随着氨浓度的增加,主要产甲烷菌从专性乙酸营养型 Methanosaeta 转变为氢营养型 Methanoculleus 和了解甚少的甲基营养型 Methanomassiliicoccus。基础细菌群落结构仍然相对稳定,但在 6.0 gN-TAN L 时,许多与潜在共生属(如 Clostridium、Bellilinea、Longilinea 和 Bacteroides)相关的 rRNA 型的表达水平显著增加。在高氨水平下,氢营养型的优势明显表明发生了协同乙酸氧化(SAO),但只发现了数量非常少的已知 SAO 细菌。讨论了已鉴定的细菌和古菌类群在 SAO 中的潜在作用以及在氨胁迫下厌氧消化过程稳定性方面的作用。