从具有高生物多样性和功能冗余的中温规模食物废物厌氧消化器中富集的协同乙酸氧化微生物群落。

Syntrophic Acetate-Oxidizing Microbial Consortia Enriched from Full-Scale Mesophilic Food Waste Anaerobic Digesters Showing High Biodiversity and Functional Redundancy.

机构信息

Institute of Waste Treatment and Reclamation, Tongji Universitygrid.24516.34, Shanghai, People's Republic of China.

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji Universitygrid.24516.34, Shanghai, People's Republic of China.

出版信息

mSystems. 2022 Oct 26;7(5):e0033922. doi: 10.1128/msystems.00339-22. Epub 2022 Sep 8.

Abstract

Syntrophic acetate oxidation (SAO) coupled with hydrogenotrophic methanogenesis (HM) plays a vital role in the anaerobic digestion of protein-rich feedstocks such as food wastes. However, current knowledge of the biodiversity and genetic potential of the involved microbial participants, especially syntrophic acetate-oxidizing bacteria (SAOB), is limited due to the low abundance of these microorganisms and challenges in their isolation. The intent of this study was to enrich and identify potential SAOB. Therefore, we conducted continuous acetate feeding under high ammonia concentrations using two separate inoculum consortia of microorganisms that originated from full-scale mesophilic food waste digesters, which lasted for more than 200 days. Using 16S rRNA gene amplicon and metagenomic analyses, we observed a convergence of the experimental microbial communities during the enrichment regarding taxonomic composition and metabolic functional composition. Stable carbon isotope analyses of biogas indicated that SAO-HM was the dominant methanogenic pathway during the enrichment process. The hydrogenotrophic methanogen dominated the archaeal community. The enriched SAO community featured high biodiversity and metabolic functional redundancy. By analyzing the metagenome-assembled genomes, the known SAOB Syntrophaceticus schinkii and six uncultured populations were identified to have the genetic potential to perform SAO through the conventional reversed Wood-Ljungdahl pathway, while another six bacteria were found to encode the reversed Wood-Ljungdahl pathway combined with a glycine cleavage system as novel SAOB candidates. These results showed that the food waste anaerobic digesters harbor diverse SAOB and highlighted the importance of the glycine cleavage system for acetate oxidation. Syntrophic acetate oxidation to CO and H, together with hydrogenotrophic methanogenesis, contributes to much of the carbon flux in the anaerobic digestion of organic wastes, especially at high ammonia concentrations. A deep understanding of the biodiversity, metabolic genetic potential, and ecology of the SAO community can help to improve biomethane production from wastes for clean energy production. Here, we enriched the SAO-HM functional guild obtained from full-scale food waste anaerobic digesters and recorded dynamic changes in community taxonomic composition and functional profiles. By reconstructing the metabolic pathways, diverse known and novel bacterial members were found to have SAO potential via the reversed Wood-Ljungdahl (WL) pathway alone, or via the reversed WL pathway with a glycine cleavage system (WLP-GCS), and those catalyzing WLP-GCS showed higher microbial abundance. This study revealed the biodiversity and metabolic functional redundancy of SAOB in full-scale anaerobic digester systems and provided inspiration for further genome-centric studies.

摘要

协同乙酸氧化(SAO)与氢营养型产甲烷(HM)在富含蛋白质的饲料(如食物废物)的厌氧消化中起着至关重要的作用。然而,由于这些微生物的丰度低以及分离它们的挑战,当前对涉及的微生物参与者(尤其是协同乙酸氧化细菌(SAOB))的生物多样性和遗传潜力的了解是有限的。本研究的目的是富集和鉴定潜在的 SAOB。因此,我们使用来自大规模中温食物废物消化器的两个单独的微生物接种物进行了在高氨浓度下连续乙酸喂养,该过程持续了 200 多天。通过 16S rRNA 基因扩增子和宏基因组分析,我们观察到在富集过程中,实验微生物群落的分类组成和代谢功能组成趋于收敛。沼气的稳定碳同位素分析表明,SAO-HM 是富集过程中主要的产甲烷途径。氢营养型产甲烷菌在古菌群落中占主导地位。富集的 SAO 群落具有高生物多样性和代谢功能冗余。通过分析宏基因组组装基因组,鉴定出已知的 SAOB Syntrophaceticus schinkii 和六个未培养种群具有通过传统的反向 Wood-Ljungdahl 途径进行 SAO 的遗传潜力,而另外六个细菌被发现编码反向 Wood-Ljungdahl 途径与甘氨酸裂解系统相结合,作为新的 SAOB 候选物。这些结果表明,食物废物厌氧消化器中蕴藏着丰富的 SAOB,并强调了甘氨酸裂解系统对乙酸氧化的重要性。协同乙酸氧化为 CO 和 H,与氢营养型产甲烷一起,有助于有机废物厌氧消化中的大部分碳通量,特别是在高氨浓度下。深入了解 SAO 群落的生物多样性、代谢遗传潜力和生态学,可以帮助提高从废物中生产生物甲烷以用于清洁能源生产的效率。在这里,我们从大规模食物废物厌氧消化器中富集了 SAO-HM 功能组,并记录了群落分类组成和功能特征的动态变化。通过重建代谢途径,发现了多种已知和新型细菌成员具有通过反向 Wood-Ljungdahl (WL) 途径或通过反向 WL 途径与甘氨酸裂解系统 (WLP-GCS) 进行 SAO 的潜力,并且那些催化 WLP-GCS 的细菌具有更高的微生物丰度。本研究揭示了全规模厌氧消化器系统中 SAOB 的生物多样性和代谢功能冗余,并为进一步的基于基因组的研究提供了启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f20/9600251/9823acae01f7/msystems.00339-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索