Suppr超能文献

数字健康与睡眠呼吸障碍:系统评价与荟萃分析。

Digital Health and Sleep-Disordered Breathing: A Systematic Review and Meta-Analysis.

机构信息

Global Brain Health Institute, University of California, San Francisco (UCSF), San Francisco, California.

Department of Global Health, University of California, San Francisco (UCSF), San Francisco, California.

出版信息

J Clin Sleep Med. 2018 Sep 15;14(9):1605-1620. doi: 10.5664/jcsm.7346.

Abstract

STUDY OBJECTIVES

Sleep disorders in most individuals remain undiagnosed and without treatment. The use of novel tools and mobile technology has the potential to increase access to diagnosis. The objective of this study was to perform a quantitative and qualitative analysis of the available literature evaluating the accuracy of smartphones and portable devices to screen for sleep-disordered breathing (SDB).

METHODS

A literature review was performed between February 18, 2017 and March 15, 2017. We included studies evaluating adults with SDB symptoms through the use mobile phones and/or portable devices, using standard polysomnography as a comparison. A qualitative evaluation of studies was performed with the QUADAS-2 rating. A bivariate random-effects meta-analysis was used to obtain the estimated sensitivity and specificity of screening SDB for four groups of devices: bed/mattress-based, contactless, contact with three or more sensors, and contact with fewer than three sensors. For each group, we also reported positive predictive values and negative predictive values for mild, moderate, and severe obstructive sleep apnea (OSA) screening.

RESULTS

Of the 22 included studies, 18 were pooled in the meta-analysis. Devices that were bed/mattress-based were found to have the best sensitivity overall (0.921, 95% confidence interval [CI] 0.870, 0.953). The sensitivity of contactless devices to detect mild OSA cases was the highest of all groups (0.976, 95% CI 0.899, 0.995), but provided a high false positive rate (0.487, 95% CI 0.137, 0.851). The remaining groups of devices showed low sensitivity and heterogeneous results.

CONCLUSIONS

This study evidenced the limitations and potential use of portable devices in screening patients for SDB. Additional research should evaluate the accuracy of devices when used at home.

摘要

研究目的

大多数人存在睡眠障碍,但并未得到诊断和治疗。新型工具和移动技术的使用有可能增加诊断的机会。本研究的目的是对评估智能手机和平板设备筛查睡眠呼吸障碍(SDB)准确性的现有文献进行定量和定性分析。

方法

我们于 2017 年 2 月 18 日至 3 月 15 日进行了文献回顾。我们纳入了通过使用移动电话和/或便携式设备评估有 SDB 症状的成年人的研究,同时将标准多导睡眠图作为对照。使用 QUADAS-2 评分对研究进行定性评估。使用双变量随机效应荟萃分析,获得了用于筛查 SDB 的 4 组设备的估计敏感性和特异性:基于床/床垫、非接触式、与 3 个或更多传感器接触和与少于 3 个传感器接触。对于每组设备,我们还报告了轻度、中度和重度阻塞性睡眠呼吸暂停(OSA)筛查的阳性预测值和阴性预测值。

结果

在纳入的 22 项研究中,有 18 项研究被纳入荟萃分析。总体而言,基于床/床垫的设备的敏感性最高(0.921,95%置信区间[CI] 0.870,0.953)。非接触式设备检测轻度 OSA 病例的敏感性是所有组中最高的(0.976,95%CI 0.899,0.995),但假阳性率较高(0.487,95%CI 0.137,0.851)。其余组设备的敏感性较低,结果不一致。

结论

本研究证明了便携式设备在筛查 SDB 患者方面的局限性和潜在用途。应开展更多研究评估这些设备在家庭中使用时的准确性。

相似文献

2
4
Detection of Sleep Apnea Using Sonar Smartphone Technology.利用声纳智能手机技术检测睡眠呼吸暂停
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:7193-7196. doi: 10.1109/EMBC.2019.8857836.
9
Portable Monitoring for the Diagnosis of OSA.便携式监测在 OSA 诊断中的应用。
Chest. 2016 Apr;149(4):1074-81. doi: 10.1378/chest.15-1076. Epub 2016 Jan 6.

引用本文的文献

9
A systematic review of smartphone applications and devices for obstructive sleep apnea.智能手机应用程序和设备治疗阻塞性睡眠呼吸暂停的系统评价。
Braz J Otorhinolaryngol. 2022 Nov-Dec;88 Suppl 5(Suppl 5):S188-S197. doi: 10.1016/j.bjorl.2022.01.004. Epub 2022 Feb 4.

本文引用的文献

2
Quantifying Airflow Limitation and Snoring During Sleep.量化睡眠期间的气流受限和打鼾情况。
Sleep Med Clin. 2016 Dec;11(4):421-434. doi: 10.1016/j.jsmc.2016.07.004. Epub 2016 Oct 27.
6
Smartphone apps for snoring.治疗打鼾的智能手机应用程序。
J Laryngol Otol. 2015 Oct;129(10):974-9. doi: 10.1017/S0022215115001978. Epub 2015 Sep 3.
7
What Is the Future of Sleep Medicine in the United States?美国睡眠医学的未来会是怎样?
Am J Respir Crit Care Med. 2015 Oct 15;192(8):915-7. doi: 10.1164/rccm.201508-1544ED.
8
Consumer Sleep Technologies: A Review of the Landscape.消费者睡眠技术:全景综述
J Clin Sleep Med. 2015 Dec 15;11(12):1455-61. doi: 10.5664/jcsm.5288.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验