Suppr超能文献

医疗保健中的数字孪生及其在鼻科学中的适用性:一篇叙述性综述。

Digital Twins in Healthcare and Their Applicability in Rhinology: A Narrative Review.

作者信息

Park Minhae, Oh Namkee, Jung Yong Gi

机构信息

Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

出版信息

J Rhinol. 2023 Jul;30(2):80-86. doi: 10.18787/jr.2023.00018. Epub 2023 Jul 28.

Abstract

Digital twins were initially introduced in the aerospace industry, but they have been applied to the medical field in the 2020s. The development of the Internet of Things, sensor technology, cloud computing, big data analysis, and simulation technology has made this idea feasible. Essentially, digital twins are virtual representations of real-world data that can generate virtual outcomes related to a patient based on their actual data. With this technology, doctors can predict treatment outcomes, plan surgery, and monitor patients' medical conditions in real time. While digital twins have endless potential, challenges include the need to deal with vast amounts of data and ensure the security of personal information. In the field of rhinology, which deals with complex anatomy from the sinus to the skull base, the adoption of digital twins is just beginning. Digital twins have begun to be incorporated into surgical navigation and the management of chronic diseases such as chronic rhinosinusitis. Despite the limitless potential of digital twins, challenges related to dealing with vast amounts of data and enhancing the security of personal data need to be surmounted for this method to be more widely applied.

摘要

数字孪生最初是在航空航天工业中引入的,但在21世纪20年代已被应用于医学领域。物联网、传感器技术、云计算、大数据分析和模拟技术的发展使这一想法变得可行。本质上,数字孪生是现实世界数据的虚拟表示,它可以根据患者的实际数据生成与患者相关的虚拟结果。借助这项技术,医生可以预测治疗结果、规划手术并实时监测患者的病情。虽然数字孪生具有无限潜力,但挑战包括需要处理大量数据并确保个人信息的安全。在处理从鼻窦到颅底复杂解剖结构的鼻科学领域,数字孪生的应用才刚刚开始。数字孪生已开始被纳入手术导航以及慢性鼻窦炎等慢性疾病的管理中。尽管数字孪生具有无限潜力,但要使这种方法得到更广泛的应用,仍需克服与处理大量数据和加强个人数据安全相关的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6b7/11524347/fe078d6e66e9/jr-2023-00018f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验