Suppr超能文献

基于时间分辨近红外光谱的 MMSE 评分预测。

Prediction of MMSE Score Using Time-Resolved Near-Infrared Spectroscopy.

机构信息

Department of Computer Science, College of Engineering, Nihon University, Koriyama, Japan.

NEWCAT Research Institute, Department of Electrical and Electronics Engineering, College of Engineering, Nihon University, Koriyama, Japan.

出版信息

Adv Exp Med Biol. 2018;1072:145-150. doi: 10.1007/978-3-319-91287-5_23.

Abstract

Time-resolved near-infrared spectroscopy (TRS) enables assessment of baseline concentrations of hemoglobin (Hb) in the prefrontal cortex, which reflects regional cerebral blood flow and neuronal activity at rest. In a previous study, we demonstrated that baseline concentrations of oxy-Hb, deoxy-Hb, total-Hb, and oxygen saturation (SO) measured by TRS were correlated with mini mental state examination (MMSE) scores. In the present study, we investigated whether Hb concentrations measured with TRS at rest can predict MMSE scores in aged people with various cognitive functions. A total of 202 subjects (87 males, 115 females, age 73.4 ± 13 years) participated. First, MMSE was conducted to assess cognitive function, and then baseline concentrations of oxy-Hb, deoxy-Hb, total-Hb, and SO in the bilateral prefrontal cortex were measured by TRS. Then, we employed the deep neural network (DNN) to predict the MMSE score. From the comparison results, the DNN showed 91.5% accuracy by leave-one-out cross validation. We found that not only the baseline concentration of SO but also optical path lengths contributed to prediction of the MMSE score. These results suggest that TRS with the DNN is useful as a screening test for cognitive impairment.

摘要

时分辨近红外光谱(TRS)可用于评估前额叶皮质的血红蛋白(Hb)基线浓度,该浓度反映了静息状态下的局部脑血流和神经元活动。在之前的研究中,我们证明了 TRS 测量的氧合 Hb、脱氧 Hb、总 Hb 和氧饱和度(SO)的基线浓度与简易精神状态检查(MMSE)评分相关。在本研究中,我们研究了在具有各种认知功能的老年人中,静息状态下通过 TRS 测量的 Hb 浓度是否可以预测 MMSE 评分。共有 202 名受试者(87 名男性,115 名女性,年龄 73.4 ± 13 岁)参与了研究。首先,通过简易精神状态检查(MMSE)评估认知功能,然后通过 TRS 测量双侧前额叶皮质的氧合 Hb、脱氧 Hb、总 Hb 和 SO 的基线浓度。然后,我们采用深度神经网络(DNN)来预测 MMSE 评分。从比较结果来看,DNN 通过留一法交叉验证达到了 91.5%的准确率。我们发现,不仅 SO 的基线浓度,而且光程长度都有助于预测 MMSE 评分。这些结果表明,具有 DNN 的 TRS 可用作认知障碍的筛查测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验