Jentsch T J, Janicke I, Sorgenfrei D, Keller S K, Wiederholt M
J Biol Chem. 1986 Sep 15;261(26):12120-7.
Using the pH-sensitive absorbance of 5 (and 6)-carboxy-4',5'- dimethylfluorescein, we investigated the regulation of cytoplasmic pH (pHi) in monkey kidney epithelial cells (BSC-1). In the absence of HCO3-, pHi is 7.15 +/- 0.1, which is not significantly different from pHi in 28 mM HCO3-, 5% CO2 (7.21 +/- 0.07). After an acid load, the cells regulate pHi in the absence of HCO3- by a Na+ (or Li+)-dependent, amiloride-inhibitable mechanism (indicative of Na+/H+ antiport). In 28 mM HCO3-, while still dependent on Na+, this regulation is only blocked in part by 1 mM amiloride. A partial block is also observed with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) (1 mM). With cells pretreated with DIDS, 1 mM amiloride nearly totally inhibits this regulation. Cl- had no effect on pHi regulation in the acidic range. In HCO3(-)-free saline, Na+ removal leads to an amiloride-insensitive acidification, which is dependent on Ca2+. In 28 mM HCO3-, Na+ (and Ca2+) removal led to a pronounced reversible and DIDS-sensitive acidification. When HCO3- was lowered from 46 to 10 mM at constant pCO2 (5%), pHi dropped by a DIDS-sensitive mechanism. Identical changes in pHo (7.6 to 6.9) in the nominal absence of HCO3- led to smaller changes of pHi. In the presence but not in the absence of HCO3-, removal of Cl- led to a DIDS-sensitive alkalinization. This was also observed in the nominal absence of Na+, which leads to a sustained acidification. It is concluded that in nominally bicarbonate-free saline, the amiloride-sensitive Na+/H+ antiport is the predominant mechanism of pHi regulation at acidic pHi, while being relatively inactive at physiological values of pHi. In bicarbonate saline, two other mechanisms effect pHi regulation: a DIDS-sensitive Na+-HCO3- symport, which contributes to cytoplasmic alkalinization, and a DIDS-sensitive Cl-/HCO3- exchange, which is apparently independent of Na+.
利用5(和6)-羧基-4',5'-二甲基荧光素的pH敏感吸光度,我们研究了猴肾上皮细胞(BSC-1)中细胞质pH(pHi)的调节。在没有HCO3-的情况下,pHi为7.15±0.1,这与在28 mM HCO3-、5% CO2条件下的pHi(7.21±0.07)无显著差异。酸负荷后,细胞在没有HCO3-的情况下通过一种依赖Na+(或Li+)、氨氯地平可抑制的机制调节pHi(表明存在Na+/H+反向转运体)。在28 mM HCO3-条件下,虽然仍依赖Na+,但这种调节仅部分被1 mM氨氯地平阻断。用4,4'-二异硫氰基芪-2,2'-二磺酸(DIDS)(1 mM)处理时也观察到部分阻断。用DIDS预处理细胞后,1 mM氨氯地平几乎完全抑制这种调节。在酸性范围内,Cl-对pHi调节无影响。在无HCO3-的盐溶液中,去除Na+会导致一种氨氯地平不敏感的酸化,这依赖于Ca2+。在28 mM HCO3-条件下,去除Na+(和Ca2+)会导致明显的可逆且对DIDS敏感的酸化。当在恒定pCO2(5%)条件下将HCO3-从46 mM降至10 mM时;pHi通过一种对DIDS敏感的机制下降。在名义上无HCO3-的情况下,将pHo从相同变化(7.6至6.9)导致pHi的变化较小。在有HCO3-但无HCO3-时,去除Cl-会导致对DIDS敏感的碱化。在名义上无Na+的情况下也观察到这种情况,这会导致持续的酸化。结论是,在名义上无碳酸氢盐的盐溶液中,氨氯地平敏感的Na+/H+反向转运体是酸性pHi时pHi调节的主要机制,而在pHi的生理值时相对不活跃。在碳酸氢盐盐溶液中,另外两种机制影响pHi调节:一种对DIDS敏感的Na+-HCO3-同向转运体,它有助于细胞质碱化;以及一种对DIDS敏感的Cl-/HCO3-交换,它显然不依赖于Na+。