Department of Mathematics, University of California, San Diego, San Diego, California, United States of America.
Department of Family Medicine and Public Health, University of California, San Diego, San Diego, California, United States of America.
PLoS One. 2018 Sep 4;13(9):e0202923. doi: 10.1371/journal.pone.0202923. eCollection 2018.
Obesity and its impact on health is a multifaceted phenomenon encompassing many factors, including demographics, environment, lifestyle, and psychosocial functioning. A systems science approach, investigating these many influences, is needed to capture the complexity and multidimensionality of obesity prevention to improve health. Leveraging baseline data from a unique clinical cohort comprising 333 postmenopausal overweight or obese breast cancer survivors participating in a weight-loss trial, we applied Bayesian networks, a machine learning approach, to infer interrelationships between lifestyle factors (e.g., sleep, physical activity), body mass index (BMI), and health outcomes (biomarkers and self-reported quality of life metrics). We used bootstrap resampling to assess network stability and accuracy, and Bayesian information criteria (BIC) to compare networks. Our results identified important behavioral subnetworks. BMI was the primary pathway linking behavioral factors to glucose regulation and inflammatory markers; the BMI-biomarker link was reproduced in 100% of resampled networks. Sleep quality was a hub impacting mental quality of life and physical health with > 95% resampling reproducibility. Omission of the BMI or sleep links significantly degraded the fit of the networks. Our findings suggest potential mechanistic pathways and useful intervention targets for future trials. Using our models, we can make quantitative predictions about health impacts that would result from targeted, weight loss and/or sleep improvement interventions. Importantly, this work highlights the utility of Bayesian networks in health behaviors research.
肥胖及其对健康的影响是一个多方面的现象,涉及许多因素,包括人口统计学、环境、生活方式和社会心理功能。为了捕捉肥胖预防的复杂性和多维性,以改善健康,需要采用系统科学方法来研究这些众多影响因素。本研究利用一项独特的临床队列的基线数据,该队列由 333 名绝经后超重或肥胖的乳腺癌幸存者参与了一项减肥试验。我们应用了贝叶斯网络(一种机器学习方法)来推断生活方式因素(例如睡眠、身体活动)、体重指数(BMI)和健康结果(生物标志物和自我报告的生活质量指标)之间的相互关系。我们使用自举重采样来评估网络的稳定性和准确性,并使用贝叶斯信息准则(BIC)来比较网络。我们的结果确定了重要的行为子网络。BMI 是将行为因素与葡萄糖调节和炎症标志物联系起来的主要途径;BMI-生物标志物的联系在 100%的重采样网络中得到了重现。睡眠质量是一个影响心理健康和身体健康的中心环节,其在 95%以上的重采样中具有可重复性。省略 BMI 或睡眠的联系会显著降低网络的拟合度。我们的研究结果表明了未来试验中可能存在的机制途径和有用的干预靶点。使用我们的模型,我们可以对靶向减肥和/或改善睡眠干预措施所带来的健康影响进行定量预测。重要的是,这项工作突出了贝叶斯网络在健康行为研究中的实用性。