IEEE Trans Neural Netw Learn Syst. 2019 Dec;30(12):3572-3583. doi: 10.1109/TNNLS.2018.2854699. Epub 2018 Aug 30.
This paper presents an adaptive neural network (NN) control of a two-degree-of-freedom manipulator driven by an electrohydraulic actuator. To restrict the system output in a prescribed performance constraint, a weighted performance function is designed to guarantee the dynamic and steady tracking errors of joint angle in a required accuracy. Then, a radial-basis-function NN is constructed to train the unknown model dynamics of a manipulator by traditional backstepping control (TBC) and obtain the preliminary estimated model, which can replace the preknown dynamics in the backstepping iteration. Furthermore, an adaptive estimation law is adopted to self-tune every trained-node weight, and the estimated model is online optimized to enhance the robustness of the NN controller. The effectiveness of the proposed control is verified by comparative simulation and experimental results with Proportional-integral-derivative and TBC methods.
本文提出了一种自适应神经网络(NN)控制方法,用于控制由电液执行器驱动的两自由度机械手。为了将系统输出限制在规定的性能约束内,设计了一个加权性能函数,以保证关节角度的动态和稳态跟踪误差达到所需的精度。然后,通过传统的反推控制(TBC)构建了一个径向基函数神经网络(RBF-NN),以训练机械手的未知模型动态,并获得初步的估计模型,该模型可以在反推迭代中替代已知的动力学。此外,采用自适应估计律来自我调整每个训练节点的权重,并在线优化估计模型,以增强 NN 控制器的鲁棒性。通过与比例积分微分(PID)和 TBC 方法的比较仿真和实验结果验证了所提出控制方法的有效性。