Suppr超能文献

基于自适应神经网络的无人空中操纵器连续接触力稳定形成过程的鲁棒控制。

Robust Control Based on Adaptive Neural Network for the Process of Steady Formation of Continuous Contact Force in Unmanned Aerial Manipulator.

机构信息

School of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471000, China.

出版信息

Sensors (Basel). 2023 Jan 15;23(2):989. doi: 10.3390/s23020989.

Abstract

Contact force control for Unmanned Aerial Manipulators (UAMs) is a challenging issue today. This paper designs a new method to stabilize the UAM system during the formation of contact force with the target. Firstly, the dynamic model of the contact process between the UAM and the target is derived. Then, a non-singular global fast terminal sliding mode controller (NGFTSMC) is proposed to guarantee that the contact process is completed within a finite time. Moreover, to compensate for system uncertainties and external disturbances, the equivalent part of the controller is estimated by an adaptive radial basis function neural network (RBFNN). Finally, the Lyapunov theory is applied to validate the global stability of the closed-loop system and derive the adaptive law for the neural network weight matrix online updating. Simulation and experimental results demonstrate that the proposed method can stably form a continuous contact force and reduce the chattering with good robustness.

摘要

无人空中操纵器(UAMs)的接触力控制是当今一个具有挑战性的问题。本文设计了一种新方法,用于在 UAM 系统与目标形成接触力的过程中稳定系统。首先,推导出 UAM 和目标之间接触过程的动力学模型。然后,提出了一种非奇异全局快速终端滑模控制器(NGFTSMC),以保证接触过程在有限时间内完成。此外,为了补偿系统不确定性和外部干扰,控制器的等效部分通过自适应径向基函数神经网络(RBFNN)进行估计。最后,应用 Lyapunov 理论验证闭环系统的全局稳定性,并在线更新神经网络权矩阵的自适应律。仿真和实验结果表明,所提出的方法可以稳定地形成连续的接触力,并具有良好的鲁棒性,减少了抖振。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/901a/9865819/2a7a34579563/sensors-23-00989-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验