Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
Neurobiol Dis. 2018 Dec;120:34-50. doi: 10.1016/j.nbd.2018.08.022. Epub 2018 Sep 2.
Spinocerebellar ataxia type 21 (SCA21) is caused by missense or nonsense mutations of the transmembrane protein 240 (TMEM240). Molecular mechanisms of SCA21 pathogenesis remain unknown because the functions of TMEM240 have not been elucidated. We aimed to reveal the molecular pathogenesis of SCA21 using cell and mouse models that overexpressed the wild-type and SCA21 mutant TMEM240. In HeLa cells, overexpressed TMEM240 localized around large cytoplasmic vesicles. The SCA21 mutation did not affect this localization. Because these vesicles contained endosomal markers, we evaluated the effect of TMEM240 fused with a FLAG tag (TMEM-FL) on endocytosis and autophagic protein degradation. Wild-type TMEM-FL significantly impaired clathrin-mediated endocytosis, whereas the SCA21 mutants did not. The SCA21 mutant TMEM-FL significantly impaired autophagic lysosomal protein degradation, in contrast to wild-type. Next, we investigated how TMEM240 affects the neural morphology of primary cultured cerebellar Purkinje cells (PCs). The SCA21 mutant TMEM-FL significantly prevented the dendritic development of PCs, in contrast to the wild-type. Finally, we assessed mice that expressed wild-type or SCA21 mutant TMEM-FL in cerebellar neurons using adeno-associated viral vectors. Mice expressing the SCA21 mutant TMEM-FL showed impaired motor coordination. Although the SCA21 mutant TMEM-FL did not trigger neurodegeneration, activation of microglia and astrocytes was induced before motor miscoordination. In addition, immunoblot experiments revealed that autophagic lysosomal protein degradation, especially chaperone-mediated autophagy, was also impaired in the cerebella that expressed the SCA21 mutant TMEM-FL. These dysregulated functions in vitro, and induction of early gliosis and lysosomal impairment in vivo by the SCA21 mutant TMEM240 may contribute to the pathogenesis of SCA21.
脊髓小脑性共济失调 21 型(SCA21)是由跨膜蛋白 240(TMEM240)的错义或无义突变引起的。由于 TMEM240 的功能尚未阐明,因此 SCA21 发病机制的分子机制仍不清楚。我们旨在使用过度表达野生型和 SCA21 突变 TMEM240 的细胞和小鼠模型揭示 SCA21 的分子发病机制。在 HeLa 细胞中,过度表达的 TMEM240 定位于大细胞质小泡周围。SCA21 突变不影响这种定位。由于这些小泡包含内体标记物,我们评估了与 FLAG 标签融合的 TMEM240(TMEM-FL)对内吞作用和自噬蛋白降解的影响。野生型 TMEM-FL 显著抑制网格蛋白介导的内吞作用,而 SCA21 突变体则没有。SCA21 突变 TMEM-FL 显著抑制自噬溶酶体蛋白降解,而野生型则没有。接下来,我们研究了 TMEM240 如何影响原代培养小脑浦肯野细胞(PCs)的神经形态。与野生型相比,SCA21 突变 TMEM-FL 显著阻止了 PCs 的树突发育。最后,我们使用腺相关病毒载体评估了在小脑神经元中表达野生型或 SCA21 突变 TMEM-FL 的小鼠。表达 SCA21 突变 TMEM-FL 的小鼠表现出运动协调能力受损。尽管 SCA21 突变 TMEM-FL 没有引发神经退行性变,但在运动协调障碍之前,小胶质细胞和星形胶质细胞被激活。此外,免疫印迹实验表明,自噬溶酶体蛋白降解,特别是伴侣介导的自噬,也在表达 SCA21 突变 TMEM-FL 的小脑受损。SCA21 突变 TMEM240 在体外的这些功能失调,以及体内早期神经胶质激活和溶酶体损伤的诱导,可能导致 SCA21 的发病机制。