Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom.
Clin Cancer Res. 2018 Dec 15;24(24):6509-6522. doi: 10.1158/1078-0432.CCR-18-0982. Epub 2018 Sep 5.
Testosterone suppression in prostate cancer is limited by serious side effects and resistance via restoration of androgen receptor (AR) functionality. ELK1 is required for AR-dependent growth in various hormone-dependent and castration-resistant prostate cancer models. The amino-terminal domain of AR docks at two sites on ELK1 to coactivate essential growth genes. This study explores the ability of small molecules to disrupt the ELK1-AR interaction in the spectrum of prostate cancer, inhibiting AR activity in a manner that would predict functional tumor selectivity.
Small-molecule drug discovery and extensive biological characterization of a lead compound.
We have discovered a lead molecule (KCI807) that selectively disrupts ELK1-dependent promoter activation by wild-type and variant ARs without interfering with ELK1 activation by ERK. KCI807 has an obligatory flavone scaffold and functional hydroxyl groups on C5 and C3'. KCI807 binds to AR, blocking ELK1 binding, and selectively blocks recruitment of AR to chromatin by ELK1. KCI807 primarily affects a subset of AR target growth genes selectively suppressing AR-dependent growth of prostate cancer cell lines with a better inhibitory profile than enzalutamide. KCI807 also inhibits growth of castration/enzalutamide-resistant cell line-derived and patient-derived tumor xenografts. In the rodent model, KCI807 has a plasma half-life of 6 hours, and maintenance of its antitumor effect is limited by self-induced metabolism at its 3'-hydroxyl.
The results offer a mechanism-based therapeutic paradigm for disrupting the AR growth-promoting axis in the spectrum of prostate tumors while reducing global suppression of testosterone actions. KCI807 offers a good lead molecule for drug development.
在前列腺癌中,睾酮抑制受到严重副作用的限制,并且由于雄激素受体 (AR) 功能的恢复而产生耐药性。ELK1 是各种激素依赖性和去势抵抗性前列腺癌模型中 AR 依赖性生长所必需的。AR 的氨基末端结构域在 ELK1 上停靠在两个位点,以共同激活必需的生长基因。本研究探讨了小分子在前列腺癌范围内破坏 ELK1-AR 相互作用的能力,以一种预测功能性肿瘤选择性的方式抑制 AR 活性。
小分子药物发现和对先导化合物的广泛生物学特性进行研究。
我们发现了一种先导分子 (KCI807),它选择性地破坏野生型和变体 AR 的 ELK1 依赖性启动子激活,而不干扰 ERK 激活的 ELK1。KCI807 具有必需的黄酮骨架,并且在 C5 和 C3'上具有功能羟基。KCI807 与 AR 结合,阻断 ELK1 结合,并选择性地阻止 AR 募集到 ELK1 染色质上。KCI807 主要影响 AR 靶生长基因的一个子集,选择性地抑制前列腺癌细胞系的 AR 依赖性生长,其抑制作用比恩杂鲁胺更好。KCI807 还抑制去势/恩杂鲁胺耐药细胞系衍生和患者衍生的肿瘤异种移植的生长。在啮齿动物模型中,KCI807 的血浆半衰期为 6 小时,其抗肿瘤作用的维持受到其 3'-羟基自身诱导代谢的限制。
这些结果提供了一种基于机制的治疗范例,用于在前列腺肿瘤范围内破坏 AR 促进生长的轴,同时减少对睾酮作用的全局抑制。KCI807 为药物开发提供了一个很好的先导分子。