Personal Genome Diagnostics, Baltimore, MD 21224, USA.
The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Sci Transl Med. 2018 Sep 5;10(457). doi: 10.1126/scitranslmed.aar7939.
Variability in the accuracy of somatic mutation detection may affect the discovery of alterations and the therapeutic management of cancer patients. To address this issue, we developed a somatic mutation discovery approach based on machine learning that outperformed existing methods in identifying experimentally validated tumor alterations (sensitivity of 97% versus 90 to 99%; positive predictive value of 98% versus 34 to 92%). Analysis of paired tumor-normal exome data from 1368 TCGA (The Cancer Genome Atlas) samples using this method revealed concordance for 74% of mutation calls but also identified likely false-positive and false-negative changes in TCGA data, including in clinically actionable genes. Determination of high-quality somatic mutation calls improved tumor mutation load-based predictions of clinical outcome for melanoma and lung cancer patients previously treated with immune checkpoint inhibitors. Integration of high-quality machine learning mutation detection in clinical next-generation sequencing (NGS) analyses increased the accuracy of test results compared to other clinical sequencing analyses. These analyses provide an approach for improved identification of tumor-specific mutations and have important implications for research and clinical management of cancer patients.
体细胞突变检测准确性的差异可能会影响到对肿瘤患者的治疗管理和变异的发现。为了解决这个问题,我们开发了一种基于机器学习的体细胞突变发现方法,该方法在识别实验验证的肿瘤变异方面优于现有方法(敏感性为 97%,而 90%至 99%为阳性预测值)。使用该方法对来自 1368 个 TCGA(癌症基因组图谱)样本的配对肿瘤-正常外显子数据进行分析,发现 74%的突变检测结果一致,但也确定了 TCGA 数据中可能存在的假阳性和假阴性变化,包括在临床可操作的基因中。确定高质量的体细胞突变检测可以提高黑色素瘤和肺癌患者的肿瘤突变负荷预测结果,这些患者之前接受过免疫检查点抑制剂治疗。将高质量的机器学习突变检测集成到临床下一代测序(NGS)分析中,与其他临床测序分析相比,提高了检测结果的准确性。这些分析为提高肿瘤特异性突变的识别提供了一种方法,对癌症患者的研究和临床管理具有重要意义。