Zagorščak Maja, Blejec Andrej, Ramšak Živa, Petek Marko, Stare Tjaša, Gruden Kristina
1Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
2Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
Plant Methods. 2018 Aug 30;14:78. doi: 10.1186/s13007-018-0345-0. eCollection 2018.
Progress in high-throughput molecular methods accompanied by more complex experimental designs demands novel data visualisation solutions. To specifically answer the question which parts of the specifical biological system are responding in particular perturbation, integrative approach in which experimental data are superimposed on a prior knowledge network is shown to be advantageous.
We have developed DiNAR, Differential Network Analysis in R, a user-friendly application with dynamic visualisation that integrates multiple condition high-throughput data and extensive biological prior knowledge. Implemented differential network approach and embedded network analysis allow users to analyse condition-specific responses in the context of topology of interest (e.g. immune signalling network) and extract knowledge concerning patterns of signalling dynamics (i.e. rewiring in network structure between two or more biological conditions). We validated the usability of software on the and datasets, but it is set to handle any biological instances.
DiNAR facilitates detection of network-rewiring events, gene prioritisation for future experimental design and allows capturing dynamics of complex biological system. The fully cross-platform Shiny App is hosted and freely available at https://nib-si.shinyapps.io/DiNAR. The most recent version of the source code is available at https://github.com/NIB-SI/DiNAR/ with a DOI 10.5281/zenodo.1230523 of the archived version in Zenodo.
高通量分子方法的进展以及更复杂的实验设计需要新颖的数据可视化解决方案。为了具体回答特定生物系统的哪些部分在特定扰动中做出反应这一问题,将实验数据叠加在先验知识网络上的整合方法被证明是有利的。
我们开发了DiNAR(R语言中的差异网络分析),这是一个用户友好的应用程序,具有动态可视化功能,可整合多条件高通量数据和广泛的生物先验知识。实施的差异网络方法和嵌入式网络分析允许用户在感兴趣的拓扑结构(如免疫信号网络)背景下分析特定条件下的反应,并提取有关信号动态模式(即两种或多种生物条件之间网络结构的重新布线)的知识。我们在[具体数据集1]和[具体数据集2]数据集上验证了该软件的可用性,但它可用于处理任何生物实例。
DiNAR有助于检测网络重新布线事件,为未来实验设计确定基因优先级,并允许捕捉复杂生物系统的动态变化。这个完全跨平台的Shiny应用程序托管在https://nib-si.shinyapps.io/DiNAR ,可免费使用。最新版本的源代码可在https://github.com/NIB-SI/DiNAR/获得,在Zenodo中存档版本的DOI为10.5281/zenodo.1230523 。