Department of Pharmaceutical Engineering , Hoseo University , Asan 336-795 , Republic of Korea.
Department of Nanotechnology and Advanced Engineering , Sejong University , Seoul 05006 , Republic of Korea.
ACS Appl Mater Interfaces. 2018 Oct 3;10(39):33198-33204. doi: 10.1021/acsami.8b10425. Epub 2018 Sep 18.
Photocatalytic water splitting is a vital technology for clean renewable energy. Despite enormous progress, the search for earth-abundant photocatalysts with long-term stability and high catalytic activity is still an important issue. We report three possible polymorphs of nickel selenide (orthorhombic phase NiSe, cubic phase NiSe, and hexagonal phase NiSe) as bifunctional catalysts for water-splitting photoelectrochemical (PEC) cells. Photocathodes or photoanodes were fabricated by depositing the nickel selenide nanocrystals (NCs) onto p- or n-type Si nanowire arrays. Detailed structural analysis reveals that compared to the other two types, the orthorhombic NiSe NCs are more metallic and form less surface oxides. As a result, the orthorhombic NiSe NCs significantly enhanced the performance of water-splitting PEC cells by increasing the photocurrents and shifting the onset potentials. The high photocurrent is ascribed to the excellent catalytic activity toward water splitting, resulting in a low charge-transfer resistance. The onset potential shift can be determined by the shift of the flat-band potential. A large band bending occurs at the electrolyte interface, so that photoelectrons or photoholes are efficiently generated to accelerate the photocatalytic reaction at the active sites of orthorhombic NiSe. The remarkable bifunctional photocatalytic activity of orthorhombic NiSe promises efficient PEC water splitting.
光催化水分解是一种清洁可再生能源的重要技术。尽管已经取得了巨大的进展,但寻找具有长期稳定性和高催化活性的丰富地球资源的光催化剂仍然是一个重要的问题。我们报告了三种可能的硒化镍多晶型物(正交相 NiSe、立方相 NiSe 和六方相 NiSe)作为水分解光电化学(PEC)电池的双功能催化剂。通过将硒化镍纳米晶体(NCs)沉积在 p 型或 n 型硅纳米线阵列上,制备了光电阴极或光阳极。详细的结构分析表明,与其他两种类型相比,正交相 NiSe NCs 更具金属性,形成的表面氧化物更少。因此,正交相 NiSe NCs 通过增加光电流和移动起始电位,显著提高了水分解 PEC 电池的性能。高光电流归因于对水分解的优异催化活性,导致电荷转移电阻低。起始电位的移动可以通过平带电位的移动来确定。在电解质界面处发生大的能带弯曲,从而有效地产生光电子或空穴,以加速正交相 NiSe 的活性位点的光催化反应。正交相 NiSe 的显著的双功能光催化活性有望实现高效的 PEC 水分解。