Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Sci Adv. 2023 Feb 10;9(6):eade9044. doi: 10.1126/sciadv.ade9044.
Artificial photosynthesis can provide a solution to our current energy needs by converting small molecules such as water or carbon dioxide into useful fuels. This can be accomplished using photochemical diodes, which interface two complementary light absorbers with suitable electrocatalysts. Nanowire semiconductors provide unique advantages in terms of light absorption and catalytic activity, yet great control is required to integrate them for overall fuel production. In this review, we journey across the progress in nanowire photoelectrochemistry (PEC) over the past two decades, revealing design principles to build these nanowire photochemical diodes. To this end, we discuss the latest progress in terms of nanowire photoelectrodes, focusing on the interplay between performance, photovoltage, electronic band structure, and catalysis. Emphasis is placed on the overall system integration and semiconductor-catalyst interface, which applies to inorganic, organic, or biologic catalysts. Last, we highlight further directions that may improve the scope of nanowire PEC systems.
人工光合作用可以通过将小分子如水或二氧化碳转化为有用的燃料来满足我们当前的能源需求。这可以通过光电化学二极管来实现,它将两个互补的光吸收体与合适的电催化剂相连接。纳米线半导体在光吸收和催化活性方面具有独特的优势,但要实现整体燃料生产,还需要对其进行很好的控制来进行集成。在这篇综述中,我们回顾了过去二十年来纳米线光电化学(PEC)的进展,揭示了构建这些纳米线光电化学二极管的设计原则。为此,我们讨论了纳米线光电电极的最新进展,重点关注性能、光电压、电子能带结构和催化之间的相互作用。重点是整体系统集成和半导体-催化剂界面,这适用于无机、有机或生物催化剂。最后,我们强调了可能改善纳米线 PEC 系统范围的进一步方向。