Suppr超能文献

纳米纤维通过 FAK/RhoA/YAP1 通路调节单个骨髓间充质干细胞成骨。

Nanofibers Regulate Single Bone Marrow Stem Cell Osteogenesis via FAK/RhoA/YAP1 Pathway.

机构信息

Department of Biomedical Sciences , Texas A&M University College of Dentistry , Dallas , Texas 75246 , United States.

出版信息

ACS Appl Mater Interfaces. 2018 Oct 3;10(39):33022-33031. doi: 10.1021/acsami.8b11449. Epub 2018 Sep 18.

Abstract

Understanding cell-material interactions is a prerequisite for the development of bio-inspired materials for tissue regeneration. While nanofibrous biomaterials have been widely used in tissue regeneration, the effects of nanofibrous architecture on stem cell behaviors are largely ambiguous because the previous biomaterial systems used for nanofiber-cell interactions could not exclude the interference of cell-cell interactions. In this study, we developed a unique micropatterning technology to confine one single stem cell in a microisland of the nanofibrous micropatterned matrix; therefore, eliminating any potential intercellular communications. The nanofibrous micropatterned matrix, which mimicked both the physical architecture and chemical composition of natural extracellular matrix, was fabricated by a combination of electrospinning, chemical crosslinking, and UV-initiated photolithography. Compared to the non-nanofibrous architecture, a bone marrow mesenchymal stem cell (BMSC) cultured on the nanofibrous microisland exhibited a more in vivo-like morphology, a smaller spreading area, less focal adhesion, and fewer stress fibers. The BMSC cultured on the nanofibrous microisland also had higher alkaline phosphatase activity, indicating nanofibrous architecture promoted BMSC differentiation. A mechanistic study reveals that nanofibers regulate single BMSC osteogenesis via the FAK/RhoA/YAP1 pathway. The nanofibrous micropatterned matrix developed in this study is an excellent platform to promote the fundamental understanding of cell-matrix interactions, ultimately provide valuable insights for the development of novel bio-inspired scaffolds for tissue regeneration.

摘要

理解细胞-材料相互作用是开发用于组织再生的仿生材料的前提。尽管纳米纤维生物材料已广泛用于组织再生,但纳米纤维结构对干细胞行为的影响在很大程度上仍不清楚,因为以前用于纳米纤维-细胞相互作用的生物材料系统不能排除细胞-细胞相互作用的干扰。在这项研究中,我们开发了一种独特的微图案化技术,将单个干细胞限制在纳米纤维微图案化基质的微岛中;因此,消除了任何潜在的细胞间通讯。纳米纤维微图案化基质通过静电纺丝、化学交联和 UV 引发光光刻的组合来制造,它模拟了天然细胞外基质的物理结构和化学成分。与非纳米纤维结构相比,骨髓间充质干细胞(BMSC)在纳米纤维微岛上培养时表现出更类似于体内的形态、更小的铺展面积、更少的焦点粘附和更少的应力纤维。在纳米纤维微岛上培养的 BMSC 碱性磷酸酶活性也更高,表明纳米纤维结构促进了 BMSC 的分化。一项机制研究表明,纳米纤维通过 FAK/RhoA/YAP1 通路调节单个 BMSC 的成骨作用。本研究中开发的纳米纤维微图案化基质是一个极好的平台,可以促进对细胞-基质相互作用的基本理解,最终为开发用于组织再生的新型仿生支架提供有价值的见解。

相似文献

引用本文的文献

1
Carbon dots-based drug delivery for bone regeneration.基于碳点的骨再生药物递送
Front Bioeng Biotechnol. 2025 May 29;13:1613901. doi: 10.3389/fbioe.2025.1613901. eCollection 2025.
10
Dynamic photoelectrical regulation of ECM protein and cellular behaviors.细胞外基质蛋白和细胞行为的动态光电调节
Bioact Mater. 2022 Sep 30;22:168-179. doi: 10.1016/j.bioactmat.2022.09.022. eCollection 2023 Apr.

本文引用的文献

2
Soft Lithography.软光刻
Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
7
Intranuclear Actin Regulates Osteogenesis.核内肌动蛋白调节成骨作用。
Stem Cells. 2015 Oct;33(10):3065-76. doi: 10.1002/stem.2090.
9
Mechanical memory and dosing influence stem cell fate.力学记忆和给药方式影响干细胞命运。
Nat Mater. 2014 Jun;13(6):645-52. doi: 10.1038/nmat3889. Epub 2014 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验