Lomakin Alexis J, Lee Kun-Chun, Han Sangyoon J, Bui Duyen A, Davidson Michael, Mogilner Alex, Danuser Gaudenz
Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue Boston, Massachusetts 02115, USA.
Department of Microbiology &Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur Boston, Massachusetts 02115, USA.
Nat Cell Biol. 2015 Nov;17(11):1435-45. doi: 10.1038/ncb3246. Epub 2015 Sep 28.
Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient.
对称性破缺极化赋予细胞和组织功能可塑性,但目前尚未得到充分理解。在这里,我们表明,上皮细胞原本被设定为维持静态形态并保持组织有序性,然而在肌动球蛋白细胞骨架松弛后,它们能够自发转变为迁移极化表型。我们发现,肌球蛋白II在皮质肌动球蛋白束的形成过程中与肌动蛋白结合,从而使其无法用于通常驱动细胞运动的树突状生长过程。在低收缩状态下,上皮细胞由于肌动蛋白树突状聚合驱动的肌动蛋白逆行流的出现而前后极化。与细胞运动相关,这些流将肌球蛋白II从细胞前端运输到后端,在后端,该马达将肌动蛋白局部“锁定”在收缩束中。在高收缩驱动的细胞运动效率低下的微环境中,胚胎和癌症上皮细胞可能会采用这种极化机制。