Suppr超能文献

大肠杆菌的代谢工程改造用于高效生产尿苷。

Metabolic engineering of Escherichia coli for high-yield uridine production.

机构信息

National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.

The Institute of Seawater Desalination and Multipurpose Utilization, SOA, Tianjin 300192, China.

出版信息

Metab Eng. 2018 Sep;49:248-256. doi: 10.1016/j.ymben.2018.09.001. Epub 2018 Sep 4.

Abstract

Uridine is a kind of pyrimidine nucleoside that has been widely applied in the pharmaceutical industry. Although microbial fermentation is a promising method for industrial production of uridine, an efficient microbial cell factory is still lacking. In this study, we constructed a metabolically engineered Escherichia coli capable of high-yield uridine production. First, we developed a CRISPR/Cas9-mediated chromosomal integration strategy to integrate large DNA into the E. coli chromosome, and a 9.7 kb DNA fragment including eight genes in the pyrimidine operon of Bacillus subtilis F126 was integrated into the yghX locus of E. coli W3110. The resultant strain produced 3.3 g/L uridine and 4.5 g/L uracil in shake flask culture for 32 h. Subsequently, five genes involved in uridine catabolism were knocked out, and the uridine titer increased to 7.8 g/L. As carbamyl phosphate, aspartate, and 5'-phosphoribosyl pyrophosphate are important precursors for uridine synthesis, we further modified several metabolism-related genes and synergistically improved the supply of these precursors, leading to a 76.9% increase in uridine production. Finally, nupC and nupG encoding nucleoside transport proteins were deleted, and the extracellular uridine accumulation increased to 14.5 g/L. After 64 h of fed-batch fermentation, the final engineered strain UR6 produced 70.3 g/L uridine with a yield and productivity of 0.259 g/g glucose and 1.1 g/L/h, respectively. To the best of our knowledge, this is the highest uridine titer and productivity ever reported for the fermentative production of uridine.

摘要

尿苷是一种嘧啶核苷,已广泛应用于制药行业。尽管微生物发酵是工业生产尿苷的一种有前途的方法,但仍然缺乏高效的微生物细胞工厂。在本研究中,我们构建了一种能够高产尿苷的代谢工程大肠杆菌。首先,我们开发了一种 CRISPR/Cas9 介导的染色体整合策略,将大片段 DNA 整合到大肠杆菌染色体中,将枯草芽孢杆菌 F126 嘧啶操纵子中的 8 个基因的 9.7kb DNA 片段整合到大肠杆菌 W3110 的 yghX 基因座上。该菌株在摇瓶培养 32 小时后可生产 3.3g/L 尿苷和 4.5g/L 尿嘧啶。随后,敲除了参与尿苷分解代谢的五个基因,尿苷产量增加到 7.8g/L。由于氨甲酰磷酸、天冬氨酸和 5'-磷酸核糖基焦磷酸是尿苷合成的重要前体,我们进一步修饰了几个与代谢相关的基因,协同提高了这些前体的供应,使尿苷产量提高了 76.9%。最后,敲除编码核苷转运蛋白的 nupC 和 nupG 基因,使细胞外尿苷积累增加到 14.5g/L。经过 64 小时的补料分批发酵,最终工程菌株 UR6 生产 70.3g/L 尿苷,葡萄糖得率和生产率分别为 0.259g/g 和 1.1g/L/h。据我们所知,这是发酵生产尿苷的最高尿苷产量和生产率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验