Suppr超能文献

从病例交叉设计中消除系统偏差。

Eliminating systematic bias from case-crossover designs.

机构信息

Research Facilitation, Alberta Health Services, Edmonton, Canada.

Advanced Education, Government of Alberta, Edmonton, Canada.

出版信息

Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3100-3111. doi: 10.1177/0962280218797145. Epub 2018 Sep 7.

Abstract

Case-crossover designs have been widely applied to epidemiological and medical investigations of associations between short-term exposures and risk of acute adverse health events. Much effort has been made in literature on understanding source of confounding and reducing systematic bias by reference-select strategies. In this paper, we explored the nature of bias in the ambi-directional and time-stratified case-crossover designs via simulation using actual air pollution data from urban Edmonton, Alberta, Canada. We further proposed a calibration approach for eliminating systematic bias in estimates (coefficient estimate, 95% confident interval, and p-value). Bias check for coefficient estimation, size check and power check for significance test were done via simulation experiments to show advantages of the calibrated case-crossover studies over the ones without calibration. An application was done to investigate associations between air pollutants and acute myocardial infarction hospitalizations in urban Edmonton. In conclusion, systematic bias in a case-crossover design is often unavoidable, leading to an obvious bias in the estimated effect and an unreliable p value in the significance test. The proposed calibration technique provides an efficient approach to eliminating systematic bias in a case-crossover study.

摘要

病例交叉设计已广泛应用于流行病学和医学研究,以探讨短期暴露与急性不良健康事件风险之间的关系。文献中已经做了大量工作来了解混杂来源,并通过参考选择策略来减少系统偏差。在本文中,我们使用来自加拿大阿尔伯塔省埃德蒙顿市的实际空气污染数据,通过模拟探讨了双向和时间分层病例交叉设计中的偏差性质。我们进一步提出了一种校准方法,以消除估计值中的系统偏差(系数估计值、95%置信区间和 p 值)。通过模拟实验进行了系数估计的偏差检查、大小检查和显著性检验的功效检查,以显示校准病例交叉研究相对于未校准研究的优势。应用于研究城市埃德蒙顿的空气污染物与急性心肌梗死住院之间的关联。总之,病例交叉设计中的系统偏差往往是不可避免的,导致估计效果明显偏倚,显著性检验中的 p 值不可靠。所提出的校准技术为病例交叉研究中消除系统偏差提供了一种有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验