From the School of Public Health, University of Nevada, Reno, NV.
Department of Biostatistics, Yale University, New Haven, CT.
Epidemiology. 2023 May 1;34(3):439-449. doi: 10.1097/EDE.0000000000001588. Epub 2023 Jan 31.
Seasonal patterns of conception may confound acute associations between birth outcomes and seasonally varying exposures. We aim to evaluate four epidemiologic designs (time-stratified case-crossover, time-series, pair-matched case-control, and time-to-event) commonly used to study acute associations between ambient temperature and preterm births.
We conducted simulations assuming no effect of temperature on preterm birth. We generated pseudo-birth data from the observed seasonal patterns of birth in the United States and analyzed them in relation to observed temperatures using design-specific seasonality adjustments.
Using the case-crossover approach (time-stratified by calendar month), we observed a bias (among 1,000 replicates) = 0.016 (Monte-Carlo standard error 95% CI: 0.015-0.018) in the regression coefficient for every 10°C increase in mean temperature in the warm season (May-September). Unbiased estimates obtained using the time-series approach required accounting for both the pregnancies-at-risk and their weighted probability of birth. Notably, adding the daily weighted probability of birth from the time-series models to the case-crossover models corrected the bias in the case-crossover approach. In the pair-matched case-control design, where the exposure period was matched on gestational window, we observed no bias. The time-to-event approach was also unbiased but was more computationally intensive than others.
Most designs can be implemented in a way that yields estimates unbiased by conception seasonality. The time-stratified case-crossover design exhibited a small positive bias, which could contribute to, but not fully explain, previously reported associations.
受孕的季节性模式可能会混淆出生结局与季节性变化暴露之间的急性关联。我们旨在评估常用于研究环境温度与早产之间急性关联的四种流行病学设计(时间分层病例交叉、时间序列、配对病例对照和时间事件)。
我们假设温度对早产没有影响,根据美国出生的季节性模式生成伪出生数据,并使用特定设计的季节性调整分析它们与观察到的温度之间的关系。
使用病例交叉方法(按日历月分层时间),我们观察到在温暖季节(5 月至 9 月)每增加 10°C 平均温度,回归系数会出现 0.016 的偏差(1000 次重复的蒙特卡罗标准误差 95%CI:0.015-0.018)。使用时间序列方法获得无偏估计值需要同时考虑风险妊娠和其出生的加权概率。值得注意的是,将时间序列模型中的每日加权出生概率添加到病例交叉模型中可以纠正病例交叉方法的偏差。在配对病例对照设计中,暴露期与妊娠窗口相匹配,我们没有观察到偏差。时间事件方法也是无偏的,但比其他方法计算量更大。
大多数设计都可以以一种不会受到受孕季节性影响的方式实施。时间分层病例交叉设计表现出微小的正偏差,这可能会促成但不能完全解释以前报告的关联。