Duneau David, Sun Haina, Revah Jonathan, San Miguel Keri, Kunerth Henry D, Caldas Ian V, Messer Philipp W, Scott Jeffrey G, Buchon Nicolas
Université Toulouse 3 Paul Sabatier, CNRS, ENSFEA; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique); Toulouse, France.
Department of Entomology, Cornell University, Ithaca, NY 14853.
G3 (Bethesda). 2018 Nov 6;8(11):3469-3480. doi: 10.1534/g3.118.200537.
Resistance to insecticides has evolved in multiple insect species, leading to increased application rates and even control failures. Understanding the genetic basis of insecticide resistance is fundamental for mitigating its impact on crop production and disease control. We performed a GWAS approach with the Genetic Reference Panel (DGRP) to identify the mutations involved in resistance to two widely used classes of insecticides: organophosphates (OPs, parathion) and pyrethroids (deltamethrin). Most variation in parathion resistance was associated with mutations in the target gene , while most variation in deltamethrin resistance was associated with mutations in , a gene encoding a detoxification enzyme never previously associated with resistance. A "nested GWAS" further revealed the contribution of other loci: and were implicated in resistance to parathion, but only in lines lacking , the paralogous gene of , and , an ATP-binding cassette transporter, were implicated in deltamethrin resistance. We observed signatures of recent selective sweeps at all of these resistance loci and confirmed that the soft sweep at is indeed driven by the identified resistance mutations. Analysis of allele frequencies in additional population samples revealed that most resistance mutations are segregating across the globe, but that frequencies can vary substantially among populations. Altogether, our data reveal that the widely used OP and pyrethroid insecticides imposed a strong selection pressure on natural insect populations. However, it remains unclear why, in , resistance evolved due to changes in the target site for OPs, but due to a detoxification enzyme for pyrethroids.
多种昆虫物种已进化出对杀虫剂的抗性,导致施用量增加,甚至防治失败。了解杀虫剂抗性的遗传基础对于减轻其对作物生产和疾病控制的影响至关重要。我们使用遗传参考面板(DGRP)进行了全基因组关联研究(GWAS),以确定与对两类广泛使用的杀虫剂抗性相关的突变:有机磷酸酯类(OPs,对硫磷)和拟除虫菊酯类(溴氰菊酯)。对硫磷抗性的大部分变异与靶基因中的突变有关,而溴氰菊酯抗性的大部分变异与一个基因中的突变有关,该基因编码一种以前从未与抗性相关的解毒酶。“嵌套GWAS”进一步揭示了其他位点的贡献: 和 与对硫磷的抗性有关,但仅在缺乏 的品系中, 是 的旁系同源基因,以及一种ATP结合盒转运蛋白 与溴氰菊酯抗性有关。我们在所有这些抗性位点观察到近期选择性清除的特征,并证实 处的软清除确实是由已鉴定的抗性突变驱动的。对其他种群样本中等位基因频率的分析表明,大多数抗性突变在全球范围内都有分离,但频率在不同种群之间可能有很大差异。总之,我们的数据表明,广泛使用的有机磷酸酯类和拟除虫菊酯类杀虫剂对天然昆虫种群施加了强大的选择压力。然而,目前尚不清楚为什么在 中,对有机磷酸酯类的抗性是由于靶位点的变化而进化的,而对拟除虫菊酯类的抗性是由于一种解毒酶。