Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Division of Applied Mathematics, Brown University, Providence, RI 02912.
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9473-9478. doi: 10.1073/pnas.1807405115. Epub 2018 Sep 6.
Polymerization and adhesion, dynamic processes that are hallmarks of sickle cell disease (SCD), have thus far been studied in vitro only separately. Here, we present quantitative results of the simultaneous and synergistic effects of adhesion and polymerization of deoxygenated sickle hemoglobin (HbS) in the human red blood cell (RBC) on the mechanisms underlying vasoocclusive pain crisis. For this purpose, we employ a specially developed hypoxic microfluidic platform, which is capable of inducing sickling and unsickling of RBCs in vitro, to test blood samples from eight patients with SCD. We supplemented these experimental results with detailed molecular-level computational simulations of cytoadherence and biorheology using dissipative particle dynamics. By recourse to image analysis techniques, we characterize sickle RBC maturation stages in the following order of the degree of adhesion susceptibility under hypoxia: sickle reticulocytes in circulation (SRs) → sickle mature erythrocytes (SMEs) → irreversibly sickled cells (ISCs). We show that () hypoxia significantly enhances sickle RBC adherence; () HbS polymerization enhances sickle cell adherence in SRs and SMEs, but not in ISCs; () SRs exhibit unique adhesion dynamics where HbS fiber projections growing outward from the cell surface create multiple sites of adhesion; and () polymerization stimulates adhesion and vice versa, thereby establishing the bidirectional coupling between the two processes. These findings offer insights into possible mechanistic pathways leading to vasoocclusion crisis. They also elucidate the processes underlying the onset of occlusion that may involve circulating reticulocytes, which are more abundant in hemolytic anemias due to robust compensatory erythropoiesis.
聚合和黏附是镰状细胞病 (SCD) 的标志性动态过程,迄今为止仅分别在体外进行了研究。在这里,我们呈现了脱氧镰状血红蛋白 (HbS) 在人红细胞 (RBC) 中黏附和聚合的同时且协同效应对血管阻塞性疼痛危机相关机制的定量研究结果。为此,我们采用了一种特别开发的缺氧微流控平台,该平台能够在体外诱导 RBC 镰变和去镰变,以测试来自 8 名 SCD 患者的血液样本。我们将这些实验结果与使用耗散粒子动力学进行的细胞黏附和生物流变学的详细分子水平计算模拟相结合。通过 recourse 于图像分析技术,我们按照黏附易感性的程度对镰状 RBC 的成熟阶段进行了以下特征描述:循环中的镰状网织红细胞 (SRs)→镰状成熟红细胞 (SMEs)→不可逆镰状细胞 (ISCs)。我们表明:(i) 缺氧显著增强了镰状 RBC 的黏附;(ii) HbS 聚合增强了 SRs 和 SMEs 中的镰状细胞黏附,但在 ISCs 中没有;(iii) SRs 表现出独特的黏附动力学,其中从细胞表面向外生长的 HbS 纤维突起会形成多个黏附位点;(iv) 聚合会刺激黏附,反之亦然,从而确立了这两个过程之间的双向耦合。这些发现为导致血管阻塞危机的可能机制途径提供了深入了解。它们还阐明了闭塞发生的过程,可能涉及到由于强大的代偿性红细胞生成而在溶血性贫血中更为丰富的循环网织红细胞。