Suppr超能文献

一种植物响应的细菌信号系统感知乙醇胺衍生物。

A plant-responsive bacterial-signaling system senses an ethanolamine derivative.

机构信息

Department of Microbiology, University of Washington, Seattle, WA 98195.

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.

出版信息

Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9785-9790. doi: 10.1073/pnas.1809611115. Epub 2018 Sep 6.

Abstract

Certain plant-associated Proteobacteria sense their host environment by detecting an unknown plant signal recognized by a member of a LuxR subfamily of transcription factors. This interkingdom communication is important for both mutualistic and pathogenic interactions. The root endophyte sp. GM79 possesses such a regulator, named PipR. In a previous study we reported that PipR activates an adjacent gene () coding for a proline iminopeptidase in response to leaf macerates and peptides and that this activation is dependent on a putative ABC-type transporter [Schaefer AL, et al. (2016) mBio 7:e01101-16]. In this study we identify a chemical derived from ethanolamine that induces PipR activity at picomolar concentrations, and we present evidence that this is the active inducer present in plant leaf macerates. First, a screen of more than 750 compounds indicated ethanolamine was a potent inducer for the PipR-sensing system; however, ethanolamine failed to bind to the periplasmic-binding protein (PBP) required for the signal response. This led us to discover that a specific ethanolamine derivative, -(2-hydroxyethyl)-2-(2-hydroxyethylamino) acetamide (HEHEAA), binds to the PBP and serves as a potent PipR-dependent inducer. We also show that a compound, which coelutes with HEHEAA in HPLC and induces gene expression in a PipR-dependent manner, can be found in leaf macerates. This work sheds light on how plant-associated bacteria can sense their environment and on the nature of inducers for a family of plant-responsive LuxR-like transcription factors found in plant-associated bacteria.

摘要

某些与植物相关的变形菌通过检测被转录因子 LuxR 亚家族成员识别的未知植物信号来感知其宿主环境。这种种间通讯对于互利共生和致病相互作用都很重要。根内生菌 sp. GM79 拥有这样的调节剂,称为 PipR。在之前的研究中,我们报道 PipR 会响应叶提取物和肽激活相邻基因 (),该基因编码脯氨酸亚氨基肽酶,并且这种激活依赖于假定的 ABC 型转运体 [Schaefer AL, 等人。(2016)mBio 7:e01101-16]。在这项研究中,我们鉴定出一种从乙醇胺衍生而来的化学物质,可在皮摩尔浓度下诱导 PipR 活性,并提供证据表明该物质是植物叶提取物中存在的有效诱导剂。首先,对超过 750 种化合物的筛选表明乙醇胺是 PipR 感应系统的有效诱导剂;然而,乙醇胺未能与信号响应所需的周质结合蛋白 (PBP) 结合。这导致我们发现一种特定的乙醇胺衍生物,-(2-羟乙基)-2-(2-羟乙基氨基)乙酰胺 (HEHEAA),与 PBP 结合并作为一种有效的 PipR 依赖性诱导剂。我们还表明,在 HPLC 中与 HEHEAA 共洗脱并以 PipR 依赖性方式诱导 基因表达的化合物可以在 叶提取物中找到。这项工作揭示了与植物相关的细菌如何感知其环境,以及植物相关细菌中发现的一类植物响应 LuxR 样转录因子的诱导剂的性质。

相似文献

1
A plant-responsive bacterial-signaling system senses an ethanolamine derivative.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9785-9790. doi: 10.1073/pnas.1809611115. Epub 2018 Sep 6.
3
Structural basis for a bacterial Pip system plant effector recognition protein.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2019462118.
4
LuxR Solos in the Plant Endophyte sp. Strain KO348.
Appl Environ Microbiol. 2020 Jun 17;86(13). doi: 10.1128/AEM.00622-20.
5
Plant growth promotion of Miscanthus × giganteus by endophytic bacteria and fungi on non-polluted and polluted soils.
World J Microbiol Biotechnol. 2018 Mar 13;34(3):48. doi: 10.1007/s11274-018-2426-7.
6
PcsR2 Is a LuxR-Type Regulator That Is Upregulated on Wheat Roots and Is Unique to .
Front Microbiol. 2020 Nov 10;11:560124. doi: 10.3389/fmicb.2020.560124. eCollection 2020.
7
New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators.
Anal Bioanal Chem. 2007 Jan;387(2):381-90. doi: 10.1007/s00216-006-0702-0. Epub 2006 Sep 5.
8
Integration host factor and LuxR synergistically bind DNA to coactivate quorum-sensing genes in Vibrio harveyi.
Mol Microbiol. 2016 Sep;101(5):823-40. doi: 10.1111/mmi.13425. Epub 2016 Jun 16.
9
An evolving perspective on the Pseudomonas aeruginosa orphan quorum sensing regulator QscR.
Front Cell Infect Microbiol. 2014 Oct 28;4:152. doi: 10.3389/fcimb.2014.00152. eCollection 2014.
10
Stenotrophomonas maltophilia responds to exogenous AHL signals through the LuxR solo SmoR (Smlt1839).
Front Cell Infect Microbiol. 2015 May 15;5:41. doi: 10.3389/fcimb.2015.00041. eCollection 2015.

引用本文的文献

2
Transcriptional suppression of sphingolipid catabolism controls pathogen resistance in C. elegans.
PLoS Pathog. 2023 Oct 31;19(10):e1011730. doi: 10.1371/journal.ppat.1011730. eCollection 2023 Oct.
3
Interkingdom Signaling of the Insect Pathogen with Plants Via the LuxR solo SdiA.
Microorganisms. 2023 Mar 30;11(4):890. doi: 10.3390/microorganisms11040890.
5
Dickeya Manipulates Multiple Quorum Sensing Systems to Control Virulence and Collective Behaviors.
Front Plant Sci. 2022 Feb 8;13:838125. doi: 10.3389/fpls.2022.838125. eCollection 2022.
7
LuxR Solos from Environmental Fluorescent Pseudomonads.
mSphere. 2021 Mar 31;6(2):e01322-20. doi: 10.1128/mSphere.01322-20.
8
Structural basis for a bacterial Pip system plant effector recognition protein.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2019462118.
9
Insights into the early stages of plant-endophytic bacteria interaction.
World J Microbiol Biotechnol. 2021 Jan 4;37(1):13. doi: 10.1007/s11274-020-02966-4.
10
PcsR2 Is a LuxR-Type Regulator That Is Upregulated on Wheat Roots and Is Unique to .
Front Microbiol. 2020 Nov 10;11:560124. doi: 10.3389/fmicb.2020.560124. eCollection 2020.

本文引用的文献

1
Ethanolamine Utilization in Bacteria.
mBio. 2018 Feb 20;9(1):e00066-18. doi: 10.1128/mBio.00066-18.
4
XocR, a LuxR solo required for virulence in Xanthomonas oryzae pv. oryzicola.
Front Cell Infect Microbiol. 2015 Apr 16;5:37. doi: 10.3389/fcimb.2015.00037. eCollection 2015.
5
A bioinformatic survey of distribution, conservation, and probable functions of LuxR solo regulators in bacteria.
Front Cell Infect Microbiol. 2015 Feb 24;5:16. doi: 10.3389/fcimb.2015.00016. eCollection 2015.
7
The kiwifruit emerging pathogen Pseudomonas syringae pv. actinidiae does not produce AHLs but possesses three luxR solos.
PLoS One. 2014 Jan 31;9(1):e87862. doi: 10.1371/journal.pone.0087862. eCollection 2014.
8
N-Acylethanolamines: lipid metabolites with functions in plant growth and development.
Plant J. 2014 Aug;79(4):568-83. doi: 10.1111/tpj.12427. Epub 2014 Feb 25.
9
LuxR- and luxI-type quorum-sensing circuits are prevalent in members of the Populus deltoides microbiome.
Appl Environ Microbiol. 2013 Sep;79(18):5745-52. doi: 10.1128/AEM.01417-13. Epub 2013 Jul 12.
10
A novel widespread interkingdom signaling circuit.
Trends Plant Sci. 2013 Mar;18(3):167-74. doi: 10.1016/j.tplants.2012.09.007. Epub 2012 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验