Suppr超能文献

RCK 结构域对人 BK 通道变构激活的贡献。

The contribution of RCK domains to human BK channel allosteric activation.

机构信息

Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90075, USA.

出版信息

J Biol Chem. 2012 Jun 22;287(26):21741-50. doi: 10.1074/jbc.M112.346171. Epub 2012 May 3.

Abstract

Large conductance voltage- and Ca(2+)-activated K(+) (BK) channels are potent regulators of cellular processes including neuronal firing, synaptic transmission, cochlear hair cell tuning, insulin release, and smooth muscle tone. Their unique activation pathway relies on structurally distinct regulatory domains including one transmembrane voltage-sensing domain (VSD) and two intracellular high affinity Ca(2+)-sensing sites per subunit (located in the RCK1 and RCK2 domains). Four pairs of RCK1 and RCK2 domains form a Ca(2+)-sensing apparatus known as the "gating ring." The allosteric interplay between voltage- and Ca(2+)-sensing apparati is a fundamental mechanism of BK channel function. Using voltage-clamp fluorometry and UV photolysis of intracellular caged Ca(2+), we optically resolved VSD activation prompted by Ca(2+) binding to the gating ring. The sudden increase of intracellular Ca(2+) concentration (Ca(2+)) induced a hyperpolarizing shift in the voltage dependence of both channel opening and VSD activation, reported by a fluorophore labeling position 202, located in the upper side of the S4 transmembrane segment. The neutralization of the Ca(2+) sensor located in the RCK2 domain abolished the effect of Ca(2+) increase on the VSD rearrangements. On the other hand, the mutation of RCK1 residues involved in Ca(2+) sensing did not prevent the effect of Ca(2+) release on the VSD, revealing a functionally distinct interaction between RCK1 and RCK2 and the VSD. A statistical-mechanical model quantifies the complex thermodynamics interplay between Ca(2+) association in two distinct sites, voltage sensor activation, and BK channel opening.

摘要

大电导电压和 Ca(2+)激活的 K(+) (BK) 通道是调节细胞过程的有力调节器,包括神经元放电、突触传递、耳蜗毛细胞调谐、胰岛素释放和平滑肌张力。它们独特的激活途径依赖于结构上不同的调节域,包括一个跨膜电压感应域 (VSD) 和每个亚基的两个细胞内高亲和力 Ca(2+)感应位点(位于 RCK1 和 RCK2 域)。四个 RCK1 和 RCK2 域形成一个 Ca(2+)感应装置,称为“门控环”。电压和 Ca(2+)感应装置之间的变构相互作用是 BK 通道功能的基本机制。使用电压钳荧光法和细胞内笼状 Ca(2+)的紫外光解,我们通过光学方法解析了 Ca(2+)结合到门控环时 VSD 的激活。细胞内 Ca(2+)浓度 (Ca(2+)) 的突然增加引起通道开放和 VSD 激活的电压依赖性的超极化移位,这是通过位于 S4 跨膜片段上侧的荧光标记位置 202 报告的。中性化位于 RCK2 域的 Ca(2+)传感器消除了 Ca(2+) 增加对 VSD 重排的影响。另一方面,参与 Ca(2+)感应的 RCK1 残基的突变并没有阻止 Ca(2+)释放对 VSD 的影响,这表明 RCK1 和 RCK2 与 VSD 之间存在功能上不同的相互作用。统计力学模型量化了两个不同位点的 Ca(2+)结合、电压传感器激活和 BK 通道开放之间复杂的热力学相互作用。

相似文献

1
The contribution of RCK domains to human BK channel allosteric activation.RCK 结构域对人 BK 通道变构激活的贡献。
J Biol Chem. 2012 Jun 22;287(26):21741-50. doi: 10.1074/jbc.M112.346171. Epub 2012 May 3.
4
Functional validation of Ca-binding residues from the crystal structure of the BK ion channel.从 BK 离子通道晶体结构中钙结合残基的功能验证。
Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):943-952. doi: 10.1016/j.bbamem.2017.09.023. Epub 2017 Sep 29.

引用本文的文献

3
Fifty years of gating currents and channel gating.门控电流和通道门控的五十年。
J Gen Physiol. 2023 Aug 7;155(8). doi: 10.1085/jgp.202313380. Epub 2023 Jul 6.
4
7
Regulatory mechanisms of mitochondrial BK channels.线粒体 BK 通道的调节机制。
Channels (Austin). 2021 Dec;15(1):424-437. doi: 10.1080/19336950.2021.1919463.

本文引用的文献

4
Ion sensing in the RCK1 domain of BK channels.BK 通道 RCK1 结构域的离子感应。
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18700-5. doi: 10.1073/pnas.1010124107. Epub 2010 Oct 11.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验