Energy Research Institute at NTU (ERI@N) and Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798.
School of Physical and Mathematical Sciences, Division of Physics and Applied Physics , Nanyang Technological University , 21 Nanyang Link , Singapore 637371.
ACS Appl Mater Interfaces. 2018 Oct 3;10(39):33434-33440. doi: 10.1021/acsami.8b10370. Epub 2018 Sep 18.
Large area surface microstructuring is commonly employed to suppress light reflection and enhance light absorption in silicon photovoltaic devices, photodetectors, and image sensors. To date, however, there are no simple means to control the surface roughness of III-V semiconductors by chemical processes similar to the metal-assisted chemical etching of black Si. Here, we demonstrate the anisotropic metal-assisted chemical etching of GaAs wafers exploiting the lower etching rate of the monoatomic Ga<111> and <311> planes. By studying the dependence of this process on different crystal orientations, we propose a qualitative reaction mechanism responsible for the self-limiting anisotropic etching and show that the reflectance of the roughened surface of black GaAs reduces up to ∼50 times compared to polished wafers, nearly doubling its absorption. This method provides a new, simple, and scalable way to enhance light absorption and power conversion efficiency of GaAs solar cells and photodetectors.
大面积表面微结构通常用于抑制硅光伏器件、光电探测器和图像传感器中的光反射并增强光吸收。然而,迄今为止,还没有简单的方法可以通过类似于黑硅的金属辅助化学蚀刻的化学工艺来控制 III-V 半导体的表面粗糙度。在这里,我们通过利用单原子 Ga<111> 和 <311> 面较低的蚀刻速率来展示 GaAs 晶圆的各向异性金属辅助化学蚀刻。通过研究该过程对不同晶体取向的依赖性,我们提出了一个定性的反应机制,该机制负责自限制各向异性蚀刻,并表明与抛光晶圆相比,粗糙化的黑 GaAs 表面的反射率降低了约 50 倍,其吸收增加了近一倍。这种方法为提高 GaAs 太阳能电池和光电探测器的光吸收和功率转换效率提供了一种新的、简单的和可扩展的方法。